@@ -119,27 +119,27 @@ fn bench_alexnet() {
119
119
let mut cfg = SequentialConfig :: default ( ) ;
120
120
cfg. add_input ( "data" , & vec ! [ 128 , 3 , 224 , 224 ] ) ;
121
121
122
- let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 2 ] , stride : vec ! [ 4 ] , axis : None } ;
122
+ let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 2 ] , stride : vec ! [ 4 ] } ;
123
123
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
124
124
cfg. add_layer ( LayerConfig :: new ( "conv1/relu" , LayerType :: ReLU ) ) ;
125
125
let pool1_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 3 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
126
126
cfg. add_layer ( LayerConfig :: new ( "pool1" , pool1_layer_cfg) ) ;
127
127
128
- let conv2_layer_cfg = ConvolutionConfig { num_output : 192 , filter_shape : vec ! [ 5 ] , padding : vec ! [ 2 ] , stride : vec ! [ 1 ] , axis : None } ;
128
+ let conv2_layer_cfg = ConvolutionConfig { num_output : 192 , filter_shape : vec ! [ 5 ] , padding : vec ! [ 2 ] , stride : vec ! [ 1 ] } ;
129
129
cfg. add_layer ( LayerConfig :: new ( "conv2" , conv2_layer_cfg) ) ;
130
130
cfg. add_layer ( LayerConfig :: new ( "conv2/relu" , LayerType :: ReLU ) ) ;
131
131
let pool2_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 3 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
132
132
cfg. add_layer ( LayerConfig :: new ( "pool2" , pool2_layer_cfg) ) ;
133
133
134
- let conv3_layer_cfg = ConvolutionConfig { num_output : 384 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
134
+ let conv3_layer_cfg = ConvolutionConfig { num_output : 384 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
135
135
cfg. add_layer ( LayerConfig :: new ( "conv3" , conv3_layer_cfg) ) ;
136
136
cfg. add_layer ( LayerConfig :: new ( "conv3/relu" , LayerType :: ReLU ) ) ;
137
137
138
- let conv4_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
138
+ let conv4_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
139
139
cfg. add_layer ( LayerConfig :: new ( "conv4" , conv4_layer_cfg) ) ;
140
140
cfg. add_layer ( LayerConfig :: new ( "conv4/relu" , LayerType :: ReLU ) ) ;
141
141
142
- let conv5_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
142
+ let conv5_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
143
143
cfg. add_layer ( LayerConfig :: new ( "conv5" , conv5_layer_cfg) ) ;
144
144
cfg. add_layer ( LayerConfig :: new ( "conv5/relu" , LayerType :: ReLU ) ) ;
145
145
let pool3_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 3 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
@@ -201,27 +201,27 @@ fn bench_overfeat() {
201
201
let mut cfg = SequentialConfig :: default ( ) ;
202
202
cfg. add_input ( "data" , & vec ! [ 128 , 3 , 231 , 231 ] ) ;
203
203
204
- let conv1_layer_cfg = ConvolutionConfig { num_output : 96 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 0 ] , stride : vec ! [ 4 ] , axis : None } ;
204
+ let conv1_layer_cfg = ConvolutionConfig { num_output : 96 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 0 ] , stride : vec ! [ 4 ] } ;
205
205
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
206
206
cfg. add_layer ( LayerConfig :: new ( "conv1/relu" , LayerType :: ReLU ) ) ;
207
207
let pool1_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
208
208
cfg. add_layer ( LayerConfig :: new ( "pool1" , pool1_layer_cfg) ) ;
209
209
210
- let conv2_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 5 ] , padding : vec ! [ 0 ] , stride : vec ! [ 1 ] , axis : None } ;
210
+ let conv2_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 5 ] , padding : vec ! [ 0 ] , stride : vec ! [ 1 ] } ;
211
211
cfg. add_layer ( LayerConfig :: new ( "conv2" , conv2_layer_cfg) ) ;
212
212
cfg. add_layer ( LayerConfig :: new ( "conv2/relu" , LayerType :: ReLU ) ) ;
213
213
let pool2_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
214
214
cfg. add_layer ( LayerConfig :: new ( "pool2" , pool2_layer_cfg) ) ;
215
215
216
- let conv3_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
216
+ let conv3_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
217
217
cfg. add_layer ( LayerConfig :: new ( "conv3" , conv3_layer_cfg) ) ;
218
218
cfg. add_layer ( LayerConfig :: new ( "conv3/relu" , LayerType :: ReLU ) ) ;
219
219
220
- let conv4_layer_cfg = ConvolutionConfig { num_output : 1024 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
220
+ let conv4_layer_cfg = ConvolutionConfig { num_output : 1024 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
221
221
cfg. add_layer ( LayerConfig :: new ( "conv4" , conv4_layer_cfg) ) ;
222
222
cfg. add_layer ( LayerConfig :: new ( "conv4/relu" , LayerType :: ReLU ) ) ;
223
223
224
- let conv5_layer_cfg = ConvolutionConfig { num_output : 1024 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
224
+ let conv5_layer_cfg = ConvolutionConfig { num_output : 1024 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
225
225
cfg. add_layer ( LayerConfig :: new ( "conv5" , conv5_layer_cfg) ) ;
226
226
cfg. add_layer ( LayerConfig :: new ( "conv5/relu" , LayerType :: ReLU ) ) ;
227
227
let pool5_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
@@ -283,43 +283,43 @@ fn bench_vgg_a() {
283
283
let mut cfg = SequentialConfig :: default ( ) ;
284
284
cfg. add_input ( "data" , & vec ! [ 64 , 3 , 224 , 224 ] ) ;
285
285
286
- let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
286
+ let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
287
287
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
288
288
cfg. add_layer ( LayerConfig :: new ( "conv1/relu" , LayerType :: ReLU ) ) ;
289
289
let pool1_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
290
290
cfg. add_layer ( LayerConfig :: new ( "pool1" , pool1_layer_cfg) ) ;
291
291
292
- let conv2_layer_cfg = ConvolutionConfig { num_output : 128 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
292
+ let conv2_layer_cfg = ConvolutionConfig { num_output : 128 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
293
293
cfg. add_layer ( LayerConfig :: new ( "conv2" , conv2_layer_cfg) ) ;
294
294
cfg. add_layer ( LayerConfig :: new ( "conv2/relu" , LayerType :: ReLU ) ) ;
295
295
let pool2_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
296
296
cfg. add_layer ( LayerConfig :: new ( "pool2" , pool2_layer_cfg) ) ;
297
297
298
- let conv3_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
298
+ let conv3_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
299
299
cfg. add_layer ( LayerConfig :: new ( "conv3" , conv3_layer_cfg) ) ;
300
300
cfg. add_layer ( LayerConfig :: new ( "conv3/relu" , LayerType :: ReLU ) ) ;
301
301
302
- let conv4_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
302
+ let conv4_layer_cfg = ConvolutionConfig { num_output : 256 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
303
303
cfg. add_layer ( LayerConfig :: new ( "conv4" , conv4_layer_cfg) ) ;
304
304
cfg. add_layer ( LayerConfig :: new ( "conv4/relu" , LayerType :: ReLU ) ) ;
305
305
let pool3_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
306
306
cfg. add_layer ( LayerConfig :: new ( "pool3" , pool3_layer_cfg) ) ;
307
307
308
- let conv5_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
308
+ let conv5_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
309
309
cfg. add_layer ( LayerConfig :: new ( "conv5" , conv5_layer_cfg) ) ;
310
310
cfg. add_layer ( LayerConfig :: new ( "conv5/relu" , LayerType :: ReLU ) ) ;
311
311
312
- let conv6_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
312
+ let conv6_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
313
313
cfg. add_layer ( LayerConfig :: new ( "conv6" , conv6_layer_cfg) ) ;
314
314
cfg. add_layer ( LayerConfig :: new ( "conv6/relu" , LayerType :: ReLU ) ) ;
315
315
let pool4_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
316
316
cfg. add_layer ( LayerConfig :: new ( "pool4" , pool4_layer_cfg) ) ;
317
317
318
- let conv7_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
318
+ let conv7_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
319
319
cfg. add_layer ( LayerConfig :: new ( "conv7" , conv7_layer_cfg) ) ;
320
320
cfg. add_layer ( LayerConfig :: new ( "conv7/relu" , LayerType :: ReLU ) ) ;
321
321
322
- let conv8_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] , axis : None } ;
322
+ let conv8_layer_cfg = ConvolutionConfig { num_output : 512 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
323
323
cfg. add_layer ( LayerConfig :: new ( "conv8" , conv8_layer_cfg) ) ;
324
324
cfg. add_layer ( LayerConfig :: new ( "conv8/relu" , LayerType :: ReLU ) ) ;
325
325
let pool5_layer_cfg = PoolingConfig { mode : PoolingMode :: Max , filter_shape : vec ! [ 2 ] , stride : vec ! [ 2 ] , padding : vec ! [ 0 ] } ;
0 commit comments