-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinterp.py
executable file
·96 lines (74 loc) · 2.36 KB
/
interp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
#-- Ayan Chakrabarti <ayanc@ttic.edu>
from __future__ import print_function
import os
import sys
import tensorflow as tf
import numpy as np
from skimage.io import imsave
from rpglib import utils as ut
from rpglib import genx as gen
OLEN=150
N=11
#########################################################################
if len(sys.argv) < 4:
sys.exit("USAGE: interp.py exp[,seed[,iteration]] out.png lid,rid lid,rid lid,rid ")
arg1 = sys.argv[1].split(",")
ename = arg1[0]
if len(arg1) == 1:
seed = 0
else:
seed = int(arg1[1])
if len(arg1) < 3:
niter = None
else:
niter = arg1[2]
from importlib import import_module
p = import_module("exp." + ename)
fname = sys.argv[2]
npair=len(sys.argv)-3
p.bsz = N*npair
layout = [npair,N]
lid = []
rid = []
for i in range(npair):
ri,li = [int(x)-1 for x in sys.argv[i+3].split(',')]
lid.append(li)
rid.append(ri)
zval = np.float32(np.random.RandomState(seed).rand(OLEN,1,1,p.zlen)*2.0-1.0)
zleft = zval[lid,...]
zright = zval[rid,...]
sm = np.float32(np.linspace(0.0,1.0,N).reshape([1,N,1,1]))
zval = zleft*sm + zright*(1.0-sm)
zval = zval.reshape([p.bsz,1,1,p.zlen])
if niter is None:
gsave = ut.ckpter(p.wts_dir + '/iter_*.bgmodel.npz')
mfile = gsave.latest
else:
mfile = p.wts_dir + '/iter_' + niter + '.bgmodel.npz'
#########################################################################
# Initialize loader, generator, discriminator
Z = tf.placeholder(shape=[p.bsz,1,1,p.zlen],dtype=tf.float32)
G = gen.Gnet(p,Z)
img = G.out
#########################################################################
# Start TF session (respecting OMP_NUM_THREADS)
nthr = os.getenv('OMP_NUM_THREADS')
if nthr is None:
sess = tf.Session()
else:
sess = tf.Session(config=tf.ConfigProto(
intra_op_parallelism_threads=int(nthr)))
sess.run(tf.initialize_all_variables())
#########################################################################
print("Restoring G from " + mfile )
ut.netload(G,mfile,sess)
print("Done!")
#########################################################################
print("Generating " + fname)
imval = sess.run(G.out,feed_dict={Z: zval})
imval = np.uint8( (imval*0.5+0.5)*255.0)
imval = imval.reshape(layout + [p.imsz,p.imsz,3])
imval = imval.transpose([0,2,1,3,4]).copy()
imval = imval.reshape([layout[0]*p.imsz,layout[1]*p.imsz,3])
imsave(fname, imval)