-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLOCB.py
157 lines (121 loc) · 5.79 KB
/
LOCB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from collections import defaultdict
import numpy as np
import random
import sys
import networkx as nx
class Cluster:
def __init__(self, users, S, b, N):
self.users = set(users) # a list/array of users
self.S = S
self.b = b
self.N = N
self.Sinv = np.linalg.inv(self.S)
self.theta = np.matmul(self.Sinv, self.b)
class LOCB:
def __init__(self, nu, d, gamma, num_seeds, delta, detect_cluster):
self.S = {i:np.eye(d) for i in range(nu)}
self.b = {i:np.zeros(d) for i in range(nu)}
self.Sinv = {i:np.eye(d) for i in range(nu)}
self.theta = {i:np.zeros(d) for i in range(nu)}
self.users = range(nu)
self.seeds = np.random.choice(self.users, num_seeds)
self.seed_state = {}
for seed in self.seeds:
self.seed_state[seed] = 0
self.clusters = {}
for seed in self.seeds:
self.clusters[seed] = Cluster(users=self.users, S=np.eye(d), b=np.zeros(d), N=1)
self.N = np.zeros(nu)
self.gamma = gamma
self.results = []
self.fin = 0
self.cluster_inds = {i:[] for i in range(nu)}
for i in self.users:
for seed in self.seeds:
if i in self.clusters[seed].users:
self.cluster_inds[i].append(seed)
self.d = d
self.n = nu
self.selected_cluster = 0
self.delta = delta
self.if_d = detect_cluster
def _beta(self, N, t):
return np.sqrt(self.d * np.log(1 + N / self.d) + 4 * np.log(t) + np.log(2)) + 1
def _select_item_ucb(self, S, Sinv, theta, items, N, t):
return np.argmax(np.dot(items, theta) + self._beta(N, t) * (np.matmul(items, Sinv) * items).sum(axis = 1))
def _update_inverse(self, S, b, Sinv, x, t):
Sinv = np.linalg.inv(S)
theta = np.matmul(Sinv, b)
return Sinv, theta
def recommend(self, i, items, t):
cls = self.cluster_inds[i]
if (len(cls)>0) and (t <40000):
res = []
for c in cls:
cluster = self.clusters[c]
res_sin = self._select_item_ucb(cluster.S,cluster.Sinv, cluster.theta, items, cluster.N, t)
res.append(res_sin)
best_cluster = max(res)
return best_cluster[1]
else:
no_cluster = self._select_item_ucb(self.S[i], self.Sinv[i], self.theta[i], items, self.N[i], t)
return no_cluster[1]
def _select_item_ucb(self, S, Sinv, theta, items, N, t):
ucbs = np.dot(items, theta) + self._beta(N, t) * (np.matmul(items, Sinv) * items).sum(axis = 1)
res = max(ucbs)
it = np.argmax(ucbs)
return (res, it)
def store_info(self, i, x, y, t):
self.S[i] += np.outer(x, x)
self.b[i] += y * x
self.N[i] += 1
self.Sinv[i], self.theta[i] = self._update_inverse(self.S[i], self.b[i], self.Sinv[i], x, self.N[i])
for c in self.cluster_inds[i]:
self.clusters[c].S += np.outer(x, x)
self.clusters[c].b += y * x
self.clusters[c].N += 1
self.clusters[c].Sinv = np.linalg.inv(self.clusters[c].S)
self.clusters[c].theta = np.matmul(self.clusters[c].Sinv, self.clusters[c].b)
def update(self, i, t):
def _factT(m):
if self.if_d:
delta = self.delta / self.n
nu = np.sqrt(2*self.d*np.log(1 + t) + 2*np.log(2/delta)) +1
de = np.sqrt(1+m/4)*np.power(self.n, 1/3)
return nu/de
else:
return np.sqrt((1 + np.log(1 + m)) / (1 + m))
if not self.fin:
for seed in self.seeds:
if not self.seed_state[seed]:
if i in self.clusters[seed].users:
diff = self.theta[i] - self.theta[seed]
if np.linalg.norm(diff) > _factT(self.N[i]) + _factT(self.N[seed]):
self.clusters[seed].users.remove(i)
self.cluster_inds[i].remove(seed)
self.clusters[seed].S = self.clusters[seed].S - self.S[i] + np.eye(self.d)
self.clusters[seed].b = self.clusters[seed].b - self.b[i]
self.clusters[seed].N = self.clusters[seed].N - self.N[i]
else:
diff = self.theta[i] - self.theta[seed]
if np.linalg.norm(diff) < _factT(self.N[i]) + _factT(self.N[seed]):
self.clusters[seed].users.add(i)
self.cluster_inds[i].append(seed)
self.clusters[seed].S = self.clusters[seed].S + self.S[i] - np.eye(self.d)
self.clusters[seed].b = self.clusters[seed].b + self.b[i]
self.clusters[seed].N = self.clusters[seed].N + self.N[i]
if self.if_d: thre = self.gamma
else: thre = self.gamma/4
if _factT(self.N[seed]) <= thre:
self.seed_state[seed] = 1
self.results.append({seed:list(self.clusters[seed].users)})
finished = 1
for i in self.seed_state.values():
if i ==0:
finished =0
if finished:
if self.if_d:
np.save('./results/clusters', self.results)
print('Clustering finished! Round:', t)
self.stop = 1
self.fin = 1