-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsupervised_exp.py
453 lines (362 loc) · 17.3 KB
/
unsupervised_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
import os
import random
import torch
import torch.distributed as dist
import torch.nn as nn
from .base_exp import BaseExp
class UnsupervisedExp(BaseExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size)
# ---------------- model config ---------------- #
self.head_mode = head_mode
# ---------------- dataloader config ---------------- #
# set worker to 4 for shorter dataloader init time
self.data_num_workers = 4
self.weak_input_size = (1024, 1024)
self.input_size = (640, 640) # (height, width)
# Actual multiscale ranges: [640-5*32, 640+5*32].
# To disable multiscale training, set the
# self.multiscale_range to 0.
self.multiscale_range = 5
self.train_data_dir = {
"icf": self.face_data_dir["icf_train_imgs"],
"m109": os.path.join(self.face_data_dir["m109"], "images"),
"comic": os.path.join(self.body_data_dir["comic"], "JPEGImages/"),
"watercolor": os.path.join(self.body_data_dir["watercolor"], "JPEGImages/"),
"clipart": os.path.join(self.body_data_dir["clipart"], "JPEGImages/"),
"golden": self.face_data_dir["golden_pages"]
}
# --------------- transform config ----------------- #
self.hsv_prob = 1.0
self.flip_prob = 0.5
self.vertical_flip_prob = 0.12
self.gaussian_noise_prob = 0.3
self.crop_prob = 1.0
##########################################
## CURRENTLY UNAVAILABLE OPTIONS:
##########################################
# self.mosaic_prob = 0.0
# self.perp_rotate_prob = 0.15
# self.degrees = 30.0
# self.translate = 0.1
# self.mosaic_scale = (0.1, 2)
# self.shear = 2.0
# ----------------- teacher config ------------------- #
self.teacher_face_conf_thold = 0.65
self.teacher_face_nms_thold = 0.2
self.teacher_body_conf_thold = 0.65
self.teacher_body_nms_thold = 0.4
self.face_num_iter = 1
self.body_num_iter = 1
self.match_models_per_iter = 500 # set to 0 for no equalization
self.const_ema_rate = True
self.ema_keep_rate = 0.9996
self.update_teacher_per_iter = 1
self.ema_exp_denominator = 2000
self.reverse = False
self.use_focal_loss = False
# --------------- student OHEM config ----------------- #
self.num_neg_ratio = 3
self.select_neg_random = False
self.upper_conf_thold_start = 0.5
self.upper_conf_thold_end = 0.5
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.5
self.lower_conf_thold_end = 0.5
self.lower_conf_thold_step = 0.0
self.upper_conf_thold = self.upper_conf_thold_start
self.lower_conf_thold = self.lower_conf_thold_start
self.upper_iou_thold = 0.5
self.lower_iou_thold = 0.35
self.reg_loss_coeff = 2
# -------------- training config --------------------- #
self.lr = 0.0001
self.warmup_lr = self.lr
self.warmup_epochs = 0
self.max_epoch = 80
self.no_aug_epochs = 0
self.max_iter = 100
self.print_interval = 10
self.l1_loss_start = self.max_epoch - self.no_aug_epochs
def change_conf_tholds(self):
if not self.use_focal_loss:
if self.upper_conf_thold > self.upper_conf_thold_end:
self.upper_conf_thold -= self.upper_conf_thold_step
self.model.face_head.loss_fn.upper_conf_thold = self.upper_conf_thold
self.model.body_head.loss_fn.upper_conf_thold = self.upper_conf_thold
if self.lower_conf_thold < self.lower_conf_thold_end:
self.lower_conf_thold += self.lower_conf_thold_step
self.model.face_head.loss_fn.lower_conf_thold = self.lower_conf_thold
self.model.body_head.loss_fn.lower_conf_thold = self.lower_conf_thold
def get_loss_fn(self):
from yolox.models import get_loss_fn
if not self.use_focal_loss:
loss_fn = get_loss_fn("unsupervised")
return loss_fn(
num_neg_ratio=self.num_neg_ratio,
upper_conf_thold=self.upper_conf_thold,
lower_conf_thold=self.lower_conf_thold,
upper_iou_thold=self.upper_iou_thold,
lower_iou_thold=self.lower_iou_thold,
reg_loss_coeff=self.reg_loss_coeff,
random_select=self.select_neg_random
)
else:
loss_fn = get_loss_fn("yolox")
return loss_fn(strides=self.strides, in_channels=self.in_channels)
def get_optimizer(self, batch_size: int) -> torch.optim.Optimizer:
if "optimizer" not in self.__dict__:
if self.warmup_epochs > 0:
lr = self.warmup_lr
else:
lr = self.lr
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in self.model.named_modules():
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d) or "bn" in k:
pg0.append(v.weight) # no decay
elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
optimizer = torch.optim.SGD(pg0, lr=lr) # regular SGD is used
optimizer.add_param_group(
{"params": pg1, "weight_decay": self.weight_decay}
) # add pg1 with weight_decay
optimizer.add_param_group({"params": pg2})
self.optimizer = optimizer
return self.optimizer
def get_data_loader(
self, batch_size, is_distributed=False, no_aug=False, cache_img=False
):
from yolox.data import (
RawUnsupervisedComicsDataset,
StrongTransform,
WeakTransform,
YoloBatchSampler,
DataLoader,
InfiniteSampler,
worker_init_reset_seed,
)
from yolox.utils import (
wait_for_the_master,
get_local_rank,
)
dataset = RawUnsupervisedComicsDataset(
self.train_data_dir,
train=True,
weak_img_size=self.weak_input_size,
strong_img_size=self.input_size,
weak_preproc=WeakTransform(flip_prob=self.flip_prob),
strong_preproc=StrongTransform(
flip_prob=self.flip_prob,
vertical_flip_prob=self.vertical_flip_prob,
hsv_prob=self.hsv_prob,
crop_prob=self.crop_prob,
gaussian_noise_prob=self.gaussian_noise_prob),
)
self.dataset = dataset
sampler = InfiniteSampler(len(self.dataset),
seed=self.seed if self.seed else 0)
batch_sampler = YoloBatchSampler(
sampler=sampler,
batch_size=batch_size,
drop_last=False,
mosaic=not no_aug,
)
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": False}
dataloader_kwargs["batch_sampler"] = batch_sampler
dataloader_kwargs["worker_init_fn"] = worker_init_reset_seed
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
return train_loader
##############################################################################
"""
EXPERIMENT:
---------------
CHANGING MATCHING OF TEACHER AND STUDENT NETWORK IN DIFFERENT ITERATIONS
WHILE KEEPING CONFIDENCE LEVELS OF THE STUDENT NETWORK THE SAME.
"""
class Match500ConstUnsupervisedExp(UnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 500
self.upper_conf_thold_start = 0.15
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.85
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class Match250ConstUnsupervisedExp(Match500ConstUnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 250
class Match1000ConstUnsupervisedExp(Match500ConstUnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 1000
class Match2000ConstUnsupervisedExp(Match500ConstUnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 2000
class Match5000ConstUnsupervisedExp(Match500ConstUnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 5000
class NoMatchConstUnsupervisedExp(Match500ConstUnsupervisedExp):
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.match_models_per_iter = 0
# self.lr = 0.000001
##############################################################################
"""
EXPERIMENT:
---------------
USING MODIFIED FOCAL LOSS OF YOLOX NETWORK INSTEAD OF OHEM LOSS
WHILE KEEPING CONFIDENCE LEVELS OF THE STUDENT NETWORK THE SAME.
"""
class FocalConstUnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.use_focal_loss = True
class FocalNoMatchConstUnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.use_focal_loss = True
##############################################################################
"""
EXPERIMENT:
---------------
KEEPING CONFIDENCE LEVELS OF THE STUDENT NETWORK DYNAMIC BY LINEARLY
CHANGING ITS VALUES WITH THE STEP SIZE OF 0.0002.
"""
class MovingUnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.5
self.upper_conf_thold_end = 0.1
self.upper_conf_thold_step = 0.0002
self.lower_conf_thold_start = 0.5
self.lower_conf_thold_end = 0.9
self.lower_conf_thold_step = 0.0002
##############################################################################
"""
EXPERIMENT:
---------------
TESTING THE MODEL WITH DIFFERENT EMA KEEP RATES TO SEE WHICH VALUE IS MORE
SUITABLE TO THE ARCHITECTURE.
"""
class EMA9990UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.ema_keep_rate = 0.999
class EMA9992UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.ema_keep_rate = 0.9992
class EMA9996UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.ema_keep_rate = 0.9996
class EMA9998UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.ema_keep_rate = 0.9998
class EMA9999UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.ema_keep_rate = 0.9999
##############################################################################
"""
EXPERIMENT:
---------------
TESTING THE MODEL WITH DIFFERENT REGRESSION LOSS WEIGHTS
"""
class NoRegUnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.reg_loss_coeff = 0
class Reg1UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.reg_loss_coeff = 1
class Reg4UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.reg_loss_coeff = 4
class Reg10UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.reg_loss_coeff = 10
##############################################################################
"""
EXPERIMENT:
---------------
TESTING THE MODEL WITH DIFFERENT REGRESSION LOSS WEIGHTS
"""
class StuPos50Neg50UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.50
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.50
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class StuPos70Neg30UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.70
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.30
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class StuPos30Neg70UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.30
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.70
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class StuPos05Neg95UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.05
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 0.95
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class StuPos00Neg100UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.upper_conf_thold_start = 0.00
self.upper_conf_thold_end = self.upper_conf_thold_start
self.upper_conf_thold_step = 0.0
self.lower_conf_thold_start = 1.00
self.lower_conf_thold_end = self.lower_conf_thold_start
self.lower_conf_thold_step = 0.0
class TeacConf50UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.teacher_face_conf_thold = 0.5
self.teacher_body_conf_thold = 0.5
class TeacConf75UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.teacher_face_conf_thold = 0.75
self.teacher_body_conf_thold = 0.75
class TeacConf35UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.teacher_face_conf_thold = 0.35
self.teacher_body_conf_thold = 0.35
class TeacConf90UnsupervisedExp(Match500ConstUnsupervisedExp): # tends to change
def __init__(self, model_size, head_mode, **kwargs):
super().__init__(model_size, head_mode)
self.teacher_face_conf_thold = 0.9
self.teacher_body_conf_thold = 0.9