|
| 1 | +import argparse |
| 2 | +import resource |
| 3 | +import time |
| 4 | +from contextlib import contextmanager |
| 5 | +from dataclasses import dataclass |
| 6 | +from typing import Dict, Generator, List, Optional |
| 7 | + |
| 8 | +import faiss # @manual=//faiss/python:pyfaiss |
| 9 | +import numpy as np |
| 10 | +from faiss.contrib.datasets import ( # @manual=//faiss/contrib:faiss_contrib |
| 11 | + Dataset, |
| 12 | + SyntheticDataset, |
| 13 | +) |
| 14 | + |
| 15 | +US_IN_S = 1_000_000 |
| 16 | + |
| 17 | + |
| 18 | +@dataclass |
| 19 | +class PerfCounters: |
| 20 | + wall_time_s: float = 0.0 |
| 21 | + user_time_s: float = 0.0 |
| 22 | + system_time_s: float = 0.0 |
| 23 | + |
| 24 | + |
| 25 | +@contextmanager |
| 26 | +def timed_execution() -> Generator[PerfCounters, None, None]: |
| 27 | + pcounters = PerfCounters() |
| 28 | + wall_time_start = time.perf_counter() |
| 29 | + rusage_start = resource.getrusage(resource.RUSAGE_SELF) |
| 30 | + yield pcounters |
| 31 | + wall_time_end = time.perf_counter() |
| 32 | + rusage_end = resource.getrusage(resource.RUSAGE_SELF) |
| 33 | + pcounters.wall_time_s = wall_time_end - wall_time_start |
| 34 | + pcounters.user_time_s = rusage_end.ru_utime - rusage_start.ru_utime |
| 35 | + pcounters.system_time_s = rusage_end.ru_stime - rusage_start.ru_stime |
| 36 | + |
| 37 | + |
| 38 | +def is_perf_counter(key: str) -> bool: |
| 39 | + return key.endswith("_time_us") |
| 40 | + |
| 41 | + |
| 42 | +def accumulate_perf_counter( |
| 43 | + phase: str, |
| 44 | + t: PerfCounters, |
| 45 | + counters: Dict[str, int] |
| 46 | +): |
| 47 | + counters[f"{phase}_wall_time_us"] = int(t.wall_time_s * US_IN_S) |
| 48 | + counters[f"{phase}_user_time_us"] = int(t.user_time_s * US_IN_S) |
| 49 | + counters[f"{phase}_system_time_us"] = int(t.system_time_s * US_IN_S) |
| 50 | + |
| 51 | + |
| 52 | +def run_on_dataset( |
| 53 | + ds: Dataset, |
| 54 | + M: int, |
| 55 | + num_threads: |
| 56 | + int, |
| 57 | + efSearch: int = 16, |
| 58 | + efConstruction: int = 40 |
| 59 | +) -> Dict[str, int]: |
| 60 | + xq = ds.get_queries() |
| 61 | + xb = ds.get_database() |
| 62 | + |
| 63 | + nb, d = xb.shape |
| 64 | + nq, d = xq.shape |
| 65 | + |
| 66 | + k = 10 |
| 67 | + # pyre-ignore[16]: Module `faiss` has no attribute `omp_set_num_threads`. |
| 68 | + faiss.omp_set_num_threads(num_threads) |
| 69 | + index = faiss.IndexHNSWFlat(d, M) |
| 70 | + index.hnsw.efConstruction = 40 # default |
| 71 | + with timed_execution() as t: |
| 72 | + index.add(xb) |
| 73 | + counters = {} |
| 74 | + accumulate_perf_counter("add", t, counters) |
| 75 | + counters["nb"] = nb |
| 76 | + |
| 77 | + index.hnsw.efSearch = efSearch |
| 78 | + with timed_execution() as t: |
| 79 | + D, I = index.search(xq, k) |
| 80 | + accumulate_perf_counter("search", t, counters) |
| 81 | + counters["nq"] = nq |
| 82 | + counters["efSearch"] = efSearch |
| 83 | + counters["efConstruction"] = efConstruction |
| 84 | + counters["M"] = M |
| 85 | + counters["d"] = d |
| 86 | + |
| 87 | + return counters |
| 88 | + |
| 89 | + |
| 90 | +def run( |
| 91 | + d: int, |
| 92 | + nb: int, |
| 93 | + nq: int, |
| 94 | + M: int, |
| 95 | + num_threads: int, |
| 96 | + efSearch: int = 16, |
| 97 | + efConstruction: int = 40, |
| 98 | +) -> Dict[str, int]: |
| 99 | + ds = SyntheticDataset(d=d, nb=nb, nt=0, nq=nq, metric="L2", seed=1338) |
| 100 | + return run_on_dataset( |
| 101 | + ds, |
| 102 | + M=M, |
| 103 | + num_threads=num_threads, |
| 104 | + efSearch=efSearch, |
| 105 | + efConstruction=efConstruction, |
| 106 | + ) |
| 107 | + |
| 108 | + |
| 109 | +def _merge_counters( |
| 110 | + element: Dict[str, int], accu: Optional[Dict[str, int]] = None |
| 111 | +) -> Dict[str, int]: |
| 112 | + if accu is None: |
| 113 | + return dict(element) |
| 114 | + else: |
| 115 | + assert accu.keys() <= element.keys(), ( |
| 116 | + "Accu keys must be a subset of element keys: " |
| 117 | + f"{accu.keys()} not a subset of {element.keys()}" |
| 118 | + ) |
| 119 | + for key in accu.keys(): |
| 120 | + if is_perf_counter(key): |
| 121 | + accu[key] += element[key] |
| 122 | + return accu |
| 123 | + |
| 124 | + |
| 125 | +def run_with_iterations( |
| 126 | + iterations: int, |
| 127 | + d: int, |
| 128 | + nb: int, |
| 129 | + nq: int, |
| 130 | + M: int, |
| 131 | + num_threads: int, |
| 132 | + efSearch: int = 16, |
| 133 | + efConstruction: int = 40, |
| 134 | +) -> Dict[str, int]: |
| 135 | + result = None |
| 136 | + for _ in range(iterations): |
| 137 | + counters = run( |
| 138 | + d=d, |
| 139 | + nb=nb, |
| 140 | + nq=nq, |
| 141 | + M=M, |
| 142 | + num_threads=num_threads, |
| 143 | + efSearch=efSearch, |
| 144 | + efConstruction=efConstruction, |
| 145 | + ) |
| 146 | + result = _merge_counters(counters, result) |
| 147 | + assert result is not None |
| 148 | + return result |
| 149 | + |
| 150 | + |
| 151 | +def _accumulate_counters( |
| 152 | + element: Dict[str, int], accu: Optional[Dict[str, List[int]]] = None |
| 153 | +) -> Dict[str, List[int]]: |
| 154 | + if accu is None: |
| 155 | + accu = {key: [value] for key, value in element.items()} |
| 156 | + return accu |
| 157 | + else: |
| 158 | + assert accu.keys() <= element.keys(), ( |
| 159 | + "Accu keys must be a subset of element keys: " |
| 160 | + f"{accu.keys()} not a subset of {element.keys()}" |
| 161 | + ) |
| 162 | + for key in accu.keys(): |
| 163 | + accu[key].append(element[key]) |
| 164 | + return accu |
| 165 | + |
| 166 | + |
| 167 | +def main(): |
| 168 | + parser = argparse.ArgumentParser(description="Benchmark HNSW") |
| 169 | + parser.add_argument("-M", "--M", type=int, required=True) |
| 170 | + parser.add_argument("-t", "--num-threads", type=int, required=True) |
| 171 | + parser.add_argument("-w", "--warm-up-iterations", type=int, default=0) |
| 172 | + parser.add_argument("-i", "--num-iterations", type=int, default=20) |
| 173 | + parser.add_argument("-r", "--num-repetitions", type=int, default=20) |
| 174 | + parser.add_argument("-s", "--ef-search", type=int, default=16) |
| 175 | + parser.add_argument("-c", "--ef-construction", type=int, default=40) |
| 176 | + parser.add_argument("-n", "--nb", type=int, default=5000) |
| 177 | + parser.add_argument("-q", "--nq", type=int, default=500) |
| 178 | + parser.add_argument("-d", "--d", type=int, default=128) |
| 179 | + args = parser.parse_args() |
| 180 | + |
| 181 | + if args.warm_up_iterations > 0: |
| 182 | + print(f"Warming up for {args.warm_up_iterations} iterations...") |
| 183 | + # warm-up |
| 184 | + run_with_iterations( |
| 185 | + iterations=args.warm_up_iterations, |
| 186 | + d=args.d, |
| 187 | + nb=args.nb, |
| 188 | + nq=args.nq, |
| 189 | + M=args.M, |
| 190 | + num_threads=args.num_threads, |
| 191 | + efSearch=args.ef_search, |
| 192 | + efConstruction=args.ef_construction, |
| 193 | + ) |
| 194 | + print( |
| 195 | + f"Running benchmark with dataset(nb={args.nb}, nq={args.nq}, " |
| 196 | + f"d={args.d}), M={args.M}, num_threads={args.num_threads}, " |
| 197 | + f"efSearch={args.ef_search}, efConstruction={args.ef_construction}" |
| 198 | + ) |
| 199 | + result = None |
| 200 | + for _ in range(args.num_repetitions): |
| 201 | + counters = run_with_iterations( |
| 202 | + iterations=args.num_iterations, |
| 203 | + d=args.d, |
| 204 | + nb=args.nb, |
| 205 | + nq=args.nq, |
| 206 | + M=args.M, |
| 207 | + num_threads=args.num_threads, |
| 208 | + efSearch=args.ef_search, |
| 209 | + efConstruction=args.ef_construction, |
| 210 | + ) |
| 211 | + result = _accumulate_counters(counters, result) |
| 212 | + assert result is not None |
| 213 | + for counter, values in result.items(): |
| 214 | + if is_perf_counter(counter): |
| 215 | + print( |
| 216 | + "%s t=%.3f us (± %.4f)" % ( |
| 217 | + counter, |
| 218 | + np.mean(values), |
| 219 | + np.std(values) |
| 220 | + ) |
| 221 | + ) |
0 commit comments