You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Auto merge of rust-lang#111999 - scottmcm:codegen-less-memcpy, r=compiler-errors
Use `load`+`store` instead of `memcpy` for small integer arrays
I was inspired by rust-lang#98892 to see whether, rather than making `mem::swap` do something smart in the library, we could update MIR assignments like `*_1 = *_2` to do something smarter than `memcpy` for sufficiently-small types that doing it inline is going to be better than a `memcpy` call in assembly anyway. After all, special code may help `mem::swap`, but if the "obvious" MIR can just result in the correct thing that helps everything -- other code like `mem::replace`, people doing it manually, and just passing around by value in general -- as well as makes MIR inlining happier since it doesn't need to deal with all the complicated library code if it just sees a couple assignments.
LLVM will turn the short, known-length `memcpy`s into direct instructions in the backend, but that's too late for it to be able to remove `alloca`s. In general, replacing `memcpy`s with typed instructions is hard in the middle-end -- even for `memcpy.inline` where it knows it won't be a function call -- is hard [due to poison propagation issues](https://rust-lang.zulipchat.com/#narrow/stream/187780-t-compiler.2Fwg-llvm/topic/memcpy.20vs.20load-store.20for.20MIR.20assignments/near/360376712). So because we know more about the type invariants -- these are typed copies -- rustc can emit something more specific, allowing LLVM to `mem2reg` away the `alloca`s in some situations.
rust-lang#52051 previously did something like this in the library for `mem::swap`, but it ended up regressing during enabling mir inlining (rust-lang@cbbf06b), so this has been suboptimal on stable for ≈5 releases now.
The code in this PR is narrowly targeted at just integer arrays in LLVM, but works via a new method on the [`LayoutTypeMethods`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/trait.LayoutTypeMethods.html) trait, so specific backends based on cg_ssa can enable this for more situations over time, as we find them. I don't want to try to bite off too much in this PR, though. (Transparent newtypes and simple things like the 3×usize `String` would be obvious candidates for a follow-up.)
Codegen demonstrations: <https://llvm.godbolt.org/z/fK8hT9aqv>
Before:
```llvm
define void `@swap_rgb48_old(ptr` noalias nocapture noundef align 2 dereferenceable(6) %x, ptr noalias nocapture noundef align 2 dereferenceable(6) %y) unnamed_addr #1 {
%a.i = alloca [3 x i16], align 2
call void `@llvm.lifetime.start.p0(i64` 6, ptr nonnull %a.i)
call void `@llvm.memcpy.p0.p0.i64(ptr` noundef nonnull align 2 dereferenceable(6) %a.i, ptr noundef nonnull align 2 dereferenceable(6) %x, i64 6, i1 false)
tail call void `@llvm.memcpy.p0.p0.i64(ptr` noundef nonnull align 2 dereferenceable(6) %x, ptr noundef nonnull align 2 dereferenceable(6) %y, i64 6, i1 false)
call void `@llvm.memcpy.p0.p0.i64(ptr` noundef nonnull align 2 dereferenceable(6) %y, ptr noundef nonnull align 2 dereferenceable(6) %a.i, i64 6, i1 false)
call void `@llvm.lifetime.end.p0(i64` 6, ptr nonnull %a.i)
ret void
}
```
Note it going to stack:
```nasm
swap_rgb48_old: # `@swap_rgb48_old`
movzx eax, word ptr [rdi + 4]
mov word ptr [rsp - 4], ax
mov eax, dword ptr [rdi]
mov dword ptr [rsp - 8], eax
movzx eax, word ptr [rsi + 4]
mov word ptr [rdi + 4], ax
mov eax, dword ptr [rsi]
mov dword ptr [rdi], eax
movzx eax, word ptr [rsp - 4]
mov word ptr [rsi + 4], ax
mov eax, dword ptr [rsp - 8]
mov dword ptr [rsi], eax
ret
```
Now:
```llvm
define void `@swap_rgb48(ptr` noalias nocapture noundef align 2 dereferenceable(6) %x, ptr noalias nocapture noundef align 2 dereferenceable(6) %y) unnamed_addr #0 {
start:
%0 = load <3 x i16>, ptr %x, align 2
%1 = load <3 x i16>, ptr %y, align 2
store <3 x i16> %1, ptr %x, align 2
store <3 x i16> %0, ptr %y, align 2
ret void
}
```
still lowers to `dword`+`word` operations, but has no stack traffic:
```nasm
swap_rgb48: # `@swap_rgb48`
mov eax, dword ptr [rdi]
movzx ecx, word ptr [rdi + 4]
movzx edx, word ptr [rsi + 4]
mov r8d, dword ptr [rsi]
mov dword ptr [rdi], r8d
mov word ptr [rdi + 4], dx
mov word ptr [rsi + 4], cx
mov dword ptr [rsi], eax
ret
```
And as a demonstration that this isn't just `mem::swap`, a `mem::replace` on a small array (since replace doesn't use swap since rust-lang#83022), which used to be `memcpy`s in LLVM changes in IR
```llvm
define void `@replace_short_array(ptr` noalias nocapture noundef sret([3 x i32]) dereferenceable(12) %0, ptr noalias noundef align 4 dereferenceable(12) %r, ptr noalias nocapture noundef readonly dereferenceable(12) %v) unnamed_addr #0 {
start:
%1 = load <3 x i32>, ptr %r, align 4
store <3 x i32> %1, ptr %0, align 4
%2 = load <3 x i32>, ptr %v, align 4
store <3 x i32> %2, ptr %r, align 4
ret void
}
```
but that lowers to reasonable `dword`+`qword` instructions still
```nasm
replace_short_array: # `@replace_short_array`
mov rax, rdi
mov rcx, qword ptr [rsi]
mov edi, dword ptr [rsi + 8]
mov dword ptr [rax + 8], edi
mov qword ptr [rax], rcx
mov rcx, qword ptr [rdx]
mov edx, dword ptr [rdx + 8]
mov dword ptr [rsi + 8], edx
mov qword ptr [rsi], rcx
ret
```
0 commit comments