1
1
library(ggpubr )
2
+ library(Hmisc )
3
+ library(gdata )
2
4
3
5
figsPath = " /Users/leo/rice/tmp/"
4
- paperPath = " /Users/leo/rice/res/papers/RECOMB2016/svn/ISBRA19 -Leo/draft1 /figs/"
6
+ paperPath = " /Users/leo/rice/res/papers/RECOMB2016/svn/WABI19 -Leo/lipics-v2019-authors /figs/"
5
7
6
8
7
9
@@ -19,7 +21,7 @@ myPlot <- ggerrorplot(values, x = "Method", y = "Time", xlab = "Method Used", yl
19
21
20
22
myPlot <- ggpar(myPlot , x.text.angle = 90 ) # angles x labels
21
23
22
- ggsave(filename = paste(paperPath ," fig_mosq6tax_time .pdf" ,sep = " " ), plot = myPlot , width = 8 ,height = 8 )
24
+ ggsave(filename = paste(paperPath ," fig_mosq_6tax_time .pdf" ,sep = " " ), plot = myPlot , width = 8 ,height = 8 )
23
25
24
26
25
27
@@ -71,6 +73,118 @@ ggsave(filename=paste(paperPath,"fig_mosq6tax_accuracy.pdf",sep=""), plot=myPlot
71
73
72
74
73
75
76
+ # ##
77
+ # Fig - primates 11tax accuracy
78
+ # ##
79
+
80
+ fileToRead = paste(figsPath ," final_primates_11tax_20x/FinalResults/r_all" ,sep = " " )
81
+ values = read.csv(fileToRead , header = TRUE )
82
+
83
+ # do a lil renaming
84
+ # values[1:21,]
85
+ values [,1 ] = gsub(" -CNTRD" , " " , values [,1 ])
86
+ values [,1 ] = gsub(" LessMem" , " " , values [,1 ])
87
+
88
+ # sort em by mean
89
+ means = aggregate(values [, 2 ], list (values $ Method ), mean )
90
+ meansOrdered = means [order(means $ x ),]
91
+ meansOrderedNames = meansOrdered [,1 ]
92
+ list (meansOrderedNames )
93
+ meanOrderedNames = fct_inorder(rev(meansOrderedNames )) # rev does reverse order (so currently best is on top, without rev its on bottom)
94
+
95
+ # meanOrderedNames <- fct_inorder(meanOrderedNames, ordered = TRUE)
96
+
97
+ meanOrderedNames <- factor (meanOrderedNames , fct_inorder(meanOrderedNames ))
98
+ # meanOrderedNames
99
+ values $ Method <- factor (values $ Method , meanOrderedNames )
100
+ # values$Method #WORKS?
101
+
102
+ # command line with saving?
103
+ myPlot <- ggerrorplot(values , x = " Method" , y = " Accuracy" , xlab = " Method Used" , ylab = " Symmetric Difference" ,
104
+ desc_stat = " mean_sd" , color = " black" ,
105
+ add = " jitter" , add.params = list (color = " darkgray" ),font.x = c(24 , " bold" , " black" ),font.y = c(24 , " bold" , " black" ),font.tickslab = c(18 ," bold" , " black" )
106
+ )
107
+ myPlot <- ggpar(myPlot , x.text.angle = 90 ) # angles x labels
108
+ # THIS IS AN OPTION ALSO
109
+ myPlot <- myPlot + coord_flip()
110
+ ggsave(filename = paste(paperPath ," fig_primates_11tax_accuracy.pdf" ,sep = " " ), plot = myPlot , width = 12 ,height = 8 )
111
+
112
+
113
+
114
+
115
+
116
+
117
+ # ##
118
+ # Fig - generate ALL ACCURACY FIGS (since the naming conventions are easy and they are all the same)
119
+ # ##
120
+
121
+ myFunctionMakePlot <- function (inputFile ,outputFile ) {
122
+
123
+ fileToRead = paste(figsPath ,inputFile ,sep = " " )
124
+ values = read.csv(fileToRead , header = TRUE )
125
+
126
+ # do a lil renaming
127
+ values [,1 ] = gsub(" -CNTRD" , " " , values [,1 ])
128
+ values [,1 ] = gsub(" LessMem" , " " , values [,1 ])
129
+
130
+ # sort em by mean
131
+ means = aggregate(values [, 2 ], list (values $ Method ), mean )
132
+ meansOrdered = means [order(means $ x ),]
133
+ meansOrderedNames = meansOrdered [,1 ]
134
+ meanOrderedNames = fct_inorder(rev(meansOrderedNames )) # rev does reverse order (so currently best is on top, without rev its on bottom)
135
+
136
+ # meanOrderedNames <- factor(meanOrderedNames, fct_inorder(meanOrderedNames))
137
+ values $ Method <- factor (values $ Method , meanOrderedNames )
138
+ # values$Method #WORKS?
139
+
140
+ # command line with saving?
141
+ myPlot <- ggerrorplot(values , x = " Method" , y = " Accuracy" , xlab = " Method Used" , ylab = " Symmetric Difference" ,
142
+ desc_stat = " mean_sd" , color = " black" ,
143
+ add = " jitter" , add.params = list (color = " darkgray" ),font.x = c(24 , " bold" , " black" ),font.y = c(24 , " bold" , " black" ),font.tickslab = c(18 ," bold" , " black" )
144
+ )
145
+ myPlot <- ggpar(myPlot , x.text.angle = 90 ) # angles x labels
146
+ # THIS IS AN OPTION ALSO (flips it)
147
+ myPlot <- myPlot + coord_flip()
148
+ ggsave(filename = paste(paperPath ,outputFile ,sep = " " ), plot = myPlot , width = 12 ,height = 8 )
149
+ }
150
+
151
+ myFunctionMakePlot(" final_butterfly_8tax_20x/FinalResults/r_all" ," fig_butterfly_8tax_accuracy.pdf" )
152
+ myFunctionMakePlot(" final_butterfly_12tax_20x/FinalResults/r_all" ," fig_butterfly_12tax_accuracy.pdf" )
153
+ myFunctionMakePlot(" final_bird_8tax_20x/FinalResults/r_all" ," fig_bird_8tax_accuracy.pdf" )
154
+ myFunctionMakePlot(" final_bird_12tax_20x/FinalResults/r_all" ," fig_bird_12tax_accuracy.pdf" )
155
+ myFunctionMakePlot(" final_mosq_12tax_20x/FinalResults/r_all" ," fig_mosq_12tax_accuracy.pdf" )
156
+ myFunctionMakePlot(" final_mosq_18tax_20x/FinalResults/r_all" ," fig_mosq_18tax_accuracy.pdf" )
157
+ myFunctionMakePlot(" final_bird_4tax_20x/FinalResults/r_all" ," fig_bird_4tax_accuracy.pdf" )
158
+ myFunctionMakePlot(" final_butterfly_4tax_20x/FinalResults/r_all" ," fig_butterfly_4tax_accuracy.pdf" )
159
+ myFunctionMakePlot(" final_mosq_6tax_20x/FinalResults/r_all" ," fig_mosq_6tax_accuracy.pdf" )
160
+ myFunctionMakePlot(" final_primates_11tax_20x/FinalResults/r_all" ," fig_primates_11tax_accuracy.pdf" )
161
+ myFunctionMakePlot(" final_humans_4tax_20x/FinalResults/r_all" ," fig_humans_4tax_accuracy.pdf" )
162
+
163
+
164
+ # ##
165
+ # GENERATE ALL TIMING FIGS
166
+ # ##
167
+ myFunctionMakeTimingPlot <- function (inputFile ,outputFile ) {
168
+
169
+ fileToRead = paste(figsPath ,inputFile ,sep = " " )
170
+ values = read.csv(fileToRead , header = TRUE )
171
+
172
+ # command line with saving?
173
+ myPlot <- ggerrorplot(values , x = " Method" , y = " Time" , xlab = " Method Used" , ylab = " Time (s)" ,
174
+ desc_stat = " mean_sd" , color = " black" ,
175
+ add = " jitter" , add.params = list (color = " darkgray" ),font.x = c(24 , " bold" , " black" ),font.y = c(24 , " bold" , " black" ),font.tickslab = c(14 ," bold" , " black" )
176
+ )
177
+
178
+ myPlot <- ggpar(myPlot , x.text.angle = 90 ) # angles x labels
179
+
180
+ ggsave(filename = paste(paperPath ,outputFile ,sep = " " ), plot = myPlot , width = 8 ,height = 8 )
181
+ }
182
+
183
+ myFunctionMakeTimingPlot(" final_mosq_6tax_20x/FinalTimings/r_all" ," fig_mosq_6tax_time.pdf" )
184
+ myFunctionMakeTimingPlot(" final_mosq_12tax_20x/FinalTimings/r_all" ," fig_mosq_12tax_time.pdf" )
185
+ myFunctionMakeTimingPlot(" final_mosq_18tax_20x/FinalTimings/r_all" ," fig_mosq_18tax_time.pdf" )
186
+ myFunctionMakeTimingPlot(" final_bird_4tax_20x/FinalTimings/r_all" ," fig_bird_4tax_time.pdf" )
187
+
74
188
75
189
76
190
@@ -94,14 +208,40 @@ dat <- data.frame(x = factor(rep(c("Controls", "Cases"), each = n),
94
208
Outcome = c(controls , cases ))
95
209
# One option is simply to show the data points, which you can do like this:
96
210
97
- dat %> % ggplot(aes(x , Outcome )) +
98
- geom_jitter(width = 0.05 )
211
+ dat %> % ggplot(aes(x , Outcome )) +
212
+ geom_jitter(width = 0.05 )
99
213
100
- myPlot <- ggplot(dat ,aes(x , Outcome )) +
101
- geom_jitter(width = 0.05 )
102
-
103
- myPlot + theme(axis.text.x = element_text(angle = 90 , hjust = 1 ))
214
+ myPlot <- ggplot(dat ,aes(x , Outcome )) +
215
+ geom_jitter(width = 0.05 )
216
+
217
+ myPlot + theme(axis.text.x = element_text(angle = 90 , hjust = 1 ))
104
218
105
- # maybe i just go with this
106
- myPlot + coord_flip()
219
+ # maybe i just go with this
220
+ myPlot + coord_flip()
221
+
222
+
223
+ # ###
224
+ # TESTING ORDER BY MEANS OF CATEGORIES
225
+ # ##
226
+
227
+ zz <- " chrom start
228
+ chr2 39482
229
+ chr1 203918
230
+ chr1 198282
231
+ chrX 7839028
232
+ chr17 3874"
233
+ Data <- read.table(text = zz , header = TRUE )
234
+
235
+ # library(Hmisc)
236
+ # library(gdata)
237
+
238
+ Data $ chrom <- reorder.factor(Data $ chrom , levels = c(" chr1" ," chr2" , " chr17" , " chrX" ))
239
+
240
+ Data [order(Data $ chrom ), ]
241
+
242
+ # ### MAKING A FUNCTION
243
+ mysummary <- function (x ,y ) {
244
+ cat(x )
245
+ cat(y )
246
+ }
107
247
0 commit comments