-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcompile.asm
598 lines (515 loc) · 9.84 KB
/
compile.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
bits 64
global _start
;default rel
%include "unistd_64.inc"
; DOC
; registers that we care about:
; rax - TOS (Top Of Stack)
; rsi - pointer to second item on stack
; rsp - top of return stack
; rdx - Address register ("a")
;
; rcx - scratch space (don't really care though, can clobber)
; DOC
; Linux x64 syscall ABI
; rax: syscall#
; rdi rsi rdx r10 r8 r9: arg1-6
; rcx r11: clobbered
; ================
; Utility Macros
; ================
%macro dup 0
lea rsi, [rsi - 8]
mov [rsi], rax
%endmacro
%macro drop 0
lodsq
%endmacro
%macro over 0
dup
mov rax, [rsi + 8]
%endmacro
; quick and dirty macro for simple sanity checking
; will fail to assemble if the two args are not numerically equal.
; when the assertion fails, yasm will say something like:
; "error: multiple is negative"
%macro STATIC_ASSERT_EQ 2
; if x != 0, then (-x)|x is -1 and assembly fails
; if x == 0, then (-x)|x is 0 and this assembles away to nothing
; y ^ z == 0 iff y == z
times ((%1)^(%2)) | (-((%1)^(%2))) db 0
%endmacro
section .data
align 16
tib times 128 db 0 ; text input buffer
tob times 128 db 0 ; text output buffer
pad times 128 db 0 ; scratch space
align 16 ; must be aligned for movdqa ('a' stands for "aligned")
hexdigits:
db '0123456789abcdef'
; this is where the next code we compile goes
var_HERE:
dq TEXT_START + TEXT_LEN
; ============
; Dictionary
; ============
%macro dict_name 1 ; textname
%%beginchars:
db %1
times 8-($-%%beginchars) db 0
%endmacro
%macro dict_symb 1 ; symbolname
dq %1
%endmacro
; DOC
; each entry in the dictionary is up to 8 chars, the remaining chars are
; filled with '\0'. thus, only 8 chars of a name are significant.
; DOC
; eventually, there will be two dictionaries, a "compile time" and
; "run-time" dictionary.
; number of entries in the dictionary
forth_cnt:
dq forth_spellings.len / 8
align 4096
forth_spellings: ; the spellings of words
dict_name '.'
dict_name '.s'
dict_name 'here'
dict_name '+'
dict_name '-'
dict_name '~'
dict_name 'exit'
dict_name 'time'
dict_name 'emit'
dict_name 'dup'
dict_name 'syscall6'
dict_name '1,'
dict_name '2,'
dict_name '3,'
dict_name '4,'
dict_name 'jmp'
dict_name 'create'
.len equ $-forth_spellings
align 4096
forth_offsets: ; the code offsets corresponding to the spellings
dict_symb hexdot
dict_symb dot_s
dict_symb here
dict_symb plus
dict_symb minus
dict_symb invert
dict_symb exit
dict_symb time
dict_symb emit
dict_symb dup_
dict_symb syscall6
dict_symb _1comma
dict_symb _2comma
dict_symb _3comma
dict_symb _4comma
dict_symb _jmp
dict_symb create
.len equ $-forth_offsets
STATIC_ASSERT_EQ forth_spellings.len, forth_offsets.len
macro_cnt:
dq macro_spellings.len / 8
align 4096
macro_spellings:
dict_name 'dup' ; TODO this is a placeholder
.len equ $-macro_spellings
align 4096
macro_offsets: ; the code offsets corresponding to the spellings
dict_symb dup_
.len equ $-macro_offsets
STATIC_ASSERT_EQ macro_spellings.len, macro_offsets.len
; =======
; Words
; =======
section .text
align 4096
TEXT_START:
; DOC
; "here" is Forth parlance for the next location into which to put data
; with comma (',').
; where to compile code into
here:
dup
mov rax, [var_HERE]
ret
; write into here
comma:
mov ecx, 8
.shared:
mov rdx, [var_HERE]
mov [rdx], rax ; take advantage of little-endian
lea rdx, [rdx + rcx]
drop
mov [var_HERE], rdx
ret
_4comma:
mov ecx, 4
jmp comma.shared
_3comma:
mov ecx, 3
jmp comma.shared
_2comma:
mov ecx, 2
jmp comma.shared
_1comma:
mov ecx, 1
jmp comma.shared
_jmp:
mov rcx, rax
drop
jmp rcx
; create
; TODO be able to switch dictionaries, currently, forth dict is hardcoded
create:
call word_
call snorm
mov rdx, [forth_cnt]
mov [forth_spellings + rdx*8], rax
mov rax, [var_HERE]
mov [forth_offsets + rdx*8], rax
add rdx, 1
mov [forth_cnt], rdx
drop
ret
; .s
; print out the stack nondestructively
dot_s:
dup
mov rcx, rsi
.loop:
mov rax, [rcx]
push rcx
call hexdot
dup
call cr
pop rcx
add rcx, 8
test rcx, 0x0FFF ; page boundary
jnz .loop
drop
ret
dup_:
dup
ret
plus:
add rax, [rsi]
add rsi, 8
ret
minus:
mov rcx, rax
drop
sub rax, rcx
ret
invert:
not rax
ret
time:
dup
rdtsc
shl rdx, 32
or rdx, rax
mov rax, rdx
ret
; string normalize
; put a string just read onto the TIB into the normalized form that we use
; in the dictionary
; ( len -- normalized )
snorm:
mov ecx, 8
sub ecx, eax
shl ecx, 3 ; (8-len) * 8 == #bits to zero
mov rax, [tib]
shl rax, cl ; zero topmost (8-len)*8 bits
shr rax, cl
ret
; assume word has just been read onto the TIB, length in TOS
mfind:
call snorm ; XXX call before due to RCX conflict
mov ecx, [macro_cnt]
lea rdi, [macro_spellings - 8 + rcx*8]
jmp find.shared
find:
call snorm
mov ecx, [forth_cnt]
lea rdi, [forth_spellings - 8 + rcx*8]
; shared by both find and mfind
.shared:
std
repne scasq
cld
ret ; leaves rcx with index of entry, nz if not found
; tightly coupled with find. takes index from rcx left in find
execute:
push rax ; XXX hack so that we can pass len to number
call find
pop rax
jnz number ; maybe its a number then?
drop ; the spelling of the word
jmp [forth_offsets + rcx*8]
; ( syscall# arg1 arg2 arg3 -- kernelret )
syscall3:
; syscall# already in rax
mov rdi, [rsi]
mov rcx, [rsi + 8] ; tmp, move to rsi later
push rdx
mov rdx, [rsi + 16]
lea rsi, [rsi + 24] ; pop the data stack
push rsi
mov rsi, rcx
syscall
pop rsi
pop rdx
ret
; ( syscall# arg1 arg2 arg3 arg4 arg5 arg6 -- kernelret )
syscall6:
mov rdi, [rsi]
mov rcx, [rsi + 8] ; move to rsi later
push rdx
mov rdx, [rsi + 16]
mov r10, [rsi + 24]
mov r8, [rsi + 32]
mov r9, [rsi + 40]
lea rsi, [rsi + 48]
push rsi
mov rsi, rcx
syscall
pop rsi
pop rdx
ret
; get a single key of input from the user
; : key 1 pad 0 sys_read syscall3 drop pad c@ ;
key:
dup
mov eax, 1
dup
mov rax, pad
dup
mov eax, 0 ; STDIN_FILENO
dup
mov eax, sys_read
call syscall3
xor eax, eax ; ignore the kernelret
mov al, [pad]
ret
; write the character in TOS to stdout
; : emit pad c! 1 pad 1 sys_write syscall3 drop ;
emit:
mov [tob], al
mov eax, 1 ; count
; FALLTHRU
emit_n:
dup
mov rax, tob ; buf
dup
mov eax, 1 ; STDOUT_FILENO
dup
mov eax, sys_write
call syscall3
drop ; ignore the kernelret
ret
; .
; print out TOS (in hex)
; most of the work is just to unpack each nybble into its own byte
hexdot:
bswap rax ; want to print out MSB first
mov rcx, 0xF0F0F0F0F0F0F0F0
and rcx, rax
xor rax, rcx ; rax := low nybbles of old rax
shr rcx, 4 ; rcx := high nybbles of old rax
movq xmm0, rax
movq xmm1, rcx
punpcklbw xmm1, xmm0
movdqa xmm0, [hexdigits] ; could fetch this earlier into another xmm
pshufb xmm0, xmm1
movdqa [tob], xmm0
mov eax, 16 ; count
jmp emit_n
; word ( -- cnt )
; read a word into the tib, leave count on stack
; more-or-less equivalent forth:
; : ws? dup bl = over '\n' = or ;
; : skipws key ws? if drop skipws fi ;
; : #read tib a - ;
; : doword c!+ key ws? if exit fi doword ;
; : word skipws tib >a doword #read ;
word_: ; name collision with assembler builtin 'word'
.skipws:
call key
call .ws?
jz .after
drop
jmp .skipws
.after:
mov rdx, tib
.doword:
mov [rdx], al
add rdx, 1
drop
push rdx
call key
call .ws?
pop rdx
jz .doword
.#read:
sub rdx, tib
mov rax, rdx
ret
.ws?:
xor ecx, ecx
cmp al, 0x0A ; '\n'
setz cl
call .ok
cmp al, 0x20 ; ' '
setz ch
or cl, ch
ret
; XXX this OK is so naive. it just fires every time a newline is
; encountered. it should fire after the last word on a line is executed.
.ok:
test cl, cl
jz .dontprintit
dup
mov eax, 0x0a6b6f20 ; " ok\n"
mov [tob], eax
mov eax, 4
call emit_n
.dontprintit
ret
; given a length in TOS, convert that many characters off of the tib to a
; number.
; XXX: could maybe pass the buffer as an argument as well (it may be easier
; to just vector "key")
;
; more-or-less equivalent forth
; : within >r over <= over r> < and ;
; : a-f? 61 67 within ;
; : 0-9? 30 3a within ;
; : c># 0-9? if '0' - exit fi a-f? if 'a'-10 - exit fi abort ;
; : number tib >a 0 swap for 4 lshift c@+ c># + next ;
number:
mov rdx, tib
push rax
xor eax, eax
.loop:
shl rax, 4
dup
xor eax, eax
mov al, [rdx]
add rdx, 1
call c_to_#
add rax, [rsi]
add rsi, 8
sub qword [rsp], 1
jnz .loop
add rsp, 8
ret
; XXX: better to do this without so many branches
c_to_#:
call zero_to_9?
jz .after
sub al, '0'
ret
.after:
call a_to_f?
jz .after1
sub al, 'a'-10
ret
.after1:
call A_to_F?
jz abort
sub al, 'A'-10
ret
; this is kind of fragile
; (but note that it is branchless!)
within:
push rax
drop
over
xor ecx, ecx
cmp rax, [rsi]
setb cl
mov eax, ecx
sub rax, 1
add rsi, 8
over
dup
pop rax
xor ecx, ecx
cmp rax, [rsi]
setbe cl
mov eax, ecx
sub rax, 1
add rsi, 24
and rax, [rsi - 16]
mov rax, [rsi - 8]
ret
zero_to_9?:
dup
mov eax, 0x30
dup
mov eax, 0x3A
jmp within
a_to_f?:
dup
mov eax, 0x61
dup
mov eax, 0x67
jmp within
A_to_F?:
dup
mov eax, 0x41
dup
mov eax, 0x47
jmp within
; =================
; Helper routines
; =================
cr:
dup
mov eax, 0x0a
mov [tob], eax
mov eax, 1
call emit_n
ret
; this will die with SIGILL instead of SIGSEGV, which will distinguish it
; from the "usual" crashes we run into.
abort:
ud2
; ( exit-status -- )
exit:
mov edi, eax
mov eax, sys_exit
syscall
; ========
; "main"
; ========
_start:
.init:
cld ; data stack grows down
and rsp, -0x1000 ; page-align down
mov rsi, rsp
sub rsi, 0x1000 ; put data stack one page below return stack
; make code pages writable
dup
mov eax, 0x7 ; PROT_READ|PROT_WRITE|PROT_EXEC
dup
mov eax, 0x1000 ; 1 page
dup
mov rax, TEXT_START
dup
mov eax, sys_mprotect
call syscall3
drop ; kernelret
; once we reach a critical mass of self-sufficiency, then we will be able
; to really prune the system to make it super tight.
.loop:
call word_
call execute
jmp .loop
TEXT_LEN equ $-TEXT_START
; note to self: the reason a, is cyan is that it must do an offset
; calculation for the PC-rel CALL