-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainval_net.py
433 lines (377 loc) · 17.7 KB
/
trainval_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# --------------------------------------------------------
# Pytorch multi-GPU Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import pdb
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data.sampler import Sampler
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient
from model.faster_rcnn.vgg16 import vgg16
from model.faster_rcnn.resnet import resnet
#@@@ --------- 参数设置函数 ---------------------------
def parse_args():
"""
Parse input arguments
"""
#@@@ ----------- 1.运行参数设置 --------------------------
#@@@ 数据集名称
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
#@@@ backbone网络
parser.add_argument('--net', dest='net',
help='vgg16, res101',
default='res101', type=str)
#@@@ 从第几个epoch开始训练(不太理解,默认是1就完事了)
parser.add_argument('--start_epoch', dest='start_epoch',
help='starting epoch',
default=1, type=int)
#@@@ 总训练epoch数量
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=20, type=int)
#@@@ 打印训练情况的间隔step数
parser.add_argument('--disp_interval', dest='disp_interval',
help='number of iterations to display',
default=100, type=int)
#@@@ 这个没有用到
parser.add_argument('--checkpoint_interval', dest='checkpoint_interval',
help='number of iterations to display',
default=10000, type=int)
#@@@ 保存训练模型参数的目录。默认保存在工程根目录的models文件夹下
parser.add_argument('--save_dir', dest='save_dir',
help='directory to save models', default="models",
type=str)
#@@@ dataloader提取数据使用的进程数,默认为0
parser.add_argument('--nw', dest='num_workers',
help='number of worker to load data',
default=0, type=int)
# parser.add_argument('--cuda', dest='cuda',
# help='whether use CUDA',
# action='store_true')
#@@@ 是否使用GPU,默认为是
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true', default=True)
#@@@ 是否使用大图像范围。(不太理解)
parser.add_argument('--ls', dest='large_scale',
help='whether use large imag scale',
action='store_true')
#@@@ 是否使用多GPU
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
#@@@ batch_size的设置(默认为1)
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
#@@@ 是否执行未知类的边界框回归(不太理解)
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
# config optimization
#@@@ ------------ 2.网络超参数的设置 ------------------------------
#@@@ 梯度下降优化器的设置
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
#@@@ 初始学习率的设置
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=0.001, type=float)
#@@@ 学习率的衰减step数
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
#@@@ 学习率的衰减倍率
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# set training session
#@@@ --------------- 3.训练参数设置 -----------------------------
#@@@ training session(不太理解是啥)默认设置为1
parser.add_argument('--s', dest='session',
help='training session',
default=1, type=int)
# resume trained model
#@@@ 是否恢复训练模型
parser.add_argument('--r', dest='resume',
help='resume checkpoint or not',
default=False, type=bool)
#@@@ checksession默认为1
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
#@@@ checkepoch默认为1
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load model',
default=1, type=int)
#@@@ checkpoint默认为10021
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=0, type=int)
# log and diaplay
#@@@ 是否使用tensorboard可视化
parser.add_argument('--use_tfb', dest='use_tfboard',
help='whether use tensorboard',
action='store_true')
args = parser.parse_args()
return args
#@@@ ---------------- 载入训练数据的函数 ----------------------
class sampler(Sampler):
def __init__(self, train_size, batch_size):
self.num_data = train_size #@@@ train_size是训练集的图片数
self.num_per_batch = int(train_size / batch_size) #@@@ 这个num_per_batch是啥意思?感觉实际意义和命名意义有矛盾呀
self.batch_size = batch_size
self.range = torch.arange(0, batch_size).view(1, batch_size).long() #@@@ self.range为tensor([[0, 1, 2, 3, ..., batch_size]])。view是pytorch
self.leftover_flag = False #@@@ 这个是一个标记
if train_size % batch_size: #@@@ 当不整除时,此if条件成立。此时,self.num_per_batch*batch_size不等于train_size
self.leftover = torch.arange(self.num_per_batch*batch_size, train_size).long() #@@@ self.leftover等于tensor([X])。X=self.num_per_batch*batch_size向下取整
self.leftover_flag = True
#@@@ 重载迭代函数
def __iter__(self):
rand_num = torch.randperm(self.num_per_batch).view(-1, 1) * self.batch_size #@@@ view(-1,1)表示输出为列向量,行维数自动推算
self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range
self.rand_num_view = self.rand_num.view(-1) #@@@ view(-1)表示输出为行向量
if self.leftover_flag:
self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0) #@@@ 把取不到的最后不够batch_size的样本数加到最后
return iter(self.rand_num_view)
#@@@ 重载长度函数
def __len__(self):
return self.num_data
#@@@ ----------------------------- 主函数 -----------------------------------
if __name__ == '__main__':
#@@@ 得到预设的各个参数,赋给args
args = parse_args()
print('Called with args:')
print(args)
#@@@ 对参数进一步设置
#@@@ 对于参数“args.dataset”的不同取值,设置不同的数据集文件夹名字和锚盒参数
if args.dataset == "pascal_voc":
args.imdb_name = "voc_2007_trainval" #@@@ 训练集数据的文件夹名字
args.imdbval_name = "voc_2007_test" #@@@ 测试集数据的文件夹名字
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20'] #@@@ 设置锚盒的大小、比例、个数
elif args.dataset == "pascal_voc_0712":
args.imdb_name = "voc_2007_trainval+voc_2012_trainval"
args.imdbval_name = "voc_2007_test"
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']
elif args.dataset == "coco":
args.imdb_name = "coco_2014_train+coco_2014_valminusminival"
args.imdbval_name = "coco_2014_minival"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
elif args.dataset == "imagenet":
args.imdb_name = "imagenet_train"
args.imdbval_name = "imagenet_val"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '30']
elif args.dataset == "vg":
# train sizes: train, smalltrain, minitrain
# train scale: ['150-50-20', '150-50-50', '500-150-80', '750-250-150', '1750-700-450', '1600-400-20']
args.imdb_name = "vg_150-50-50_minitrain"
args.imdbval_name = "vg_150-50-50_minival"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
#@@@ 若使用大图像数据集(args.large_scale == True),读取文件"cfgs/{args.net}_ls.yml",否则读取"cfgs/{args.net}.yml"
args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net)
#@@@ 如果该.yml文件存在,使用config.py中的cfg_from_file函数读取这个文件
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
#@@@ 若已定义set_cfgs(锚的参数设置),使用config.py中的cfg_from_list函数读取它
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
#@@@ 把各个参数打印到屏幕
print('Using config:')
pprint.pprint(cfg)
#@@@ 随机种子点的设置
np.random.seed(cfg.RNG_SEED)
#torch.backends.cudnn.benchmark = True
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# train set
# -- Note: Use validation set and disable the flipped to enable faster loading.
#@@@ 设置训练是否将图像翻转
cfg.TRAIN.USE_FLIPPED = True
#@@@ 是否使用GPU来计算NMS
cfg.USE_GPU_NMS = args.cuda
#@@@ 使用roi_data_layer.roidb里的combined_roidb函数,载入训练数据集。
#@@@ imdb:初始化好的一个数据类pascal_voc
#@@@ roidb:初始化好的数据类pascal_voc的roidb,是一个字典列表,每个roi对应一个字典,每个字典包含boxes、gt_overlaps、gt_classes、flipped几个key
#@@@ ratio_list:roidb中所有roi的宽高比数组(按从小到大排列)
#@@@ ratio_index:按宽高比从小到大排列的原roidb索引序列
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
train_size = len(roidb)
#@@@ 打印训练集图片数量
print('{:d} roidb entries'.format(len(roidb)))
#@@@ 保存训练模型的文件夹
output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
if not os.path.exists(output_dir):
os.makedirs(output_dir)
#@@@ 定义一个读取训练数据batch的sampler类
sampler_batch = sampler(train_size, args.batch_size)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.cuda:
cfg.CUDA = True
# initilize the network here.
if args.net == 'vgg16':
fasterRCNN = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic)
elif args.net == 'res101':
fasterRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic)
elif args.net == 'res50':
fasterRCNN = resnet(imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic)
elif args.net == 'res152':
fasterRCNN = resnet(imdb.classes, 152, pretrained=True, class_agnostic=args.class_agnostic)
else:
print("network is not defined")
pdb.set_trace()
fasterRCNN.create_architecture()
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
#tr_momentum = cfg.TRAIN.MOMENTUM
#tr_momentum = args.momentum
params = []
for key, value in dict(fasterRCNN.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
if args.cuda:
fasterRCNN.cuda()
if args.optimizer == "adam":
lr = lr * 0.1
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.resume:
load_name = os.path.join(output_dir,
'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint))
print("loading checkpoint %s" % (load_name))
checkpoint = torch.load(load_name)
args.session = checkpoint['session']
args.start_epoch = checkpoint['epoch']
fasterRCNN.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (load_name))
if args.mGPUs:
fasterRCNN = nn.DataParallel(fasterRCNN)
iters_per_epoch = int(train_size / args.batch_size)
if args.use_tfboard:
from tensorboardX import SummaryWriter
logger = SummaryWriter("logs")
for epoch in range(args.start_epoch, args.max_epochs + 1):
# setting to train mode
fasterRCNN.train()
loss_temp = 0
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter = iter(dataloader)
for step in range(iters_per_epoch):
data = next(data_iter)
with torch.no_grad():
im_data.resize_(data[0].size()).copy_(data[0])
im_info.resize_(data[1].size()).copy_(data[1])
gt_boxes.resize_(data[2].size()).copy_(data[2])
num_boxes.resize_(data[3].size()).copy_(data[3])
fasterRCNN.zero_grad()
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
+ RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
loss_temp += loss.item()
# backward
optimizer.zero_grad()
loss.backward()
if args.net == "vgg16":
clip_gradient(fasterRCNN, 10.)
optimizer.step()
if step % args.disp_interval == 0:
end = time.time()
if step > 0:
loss_temp /= (args.disp_interval + 1)
if args.mGPUs:
loss_rpn_cls = rpn_loss_cls.mean().item()
loss_rpn_box = rpn_loss_box.mean().item()
loss_rcnn_cls = RCNN_loss_cls.mean().item()
loss_rcnn_box = RCNN_loss_bbox.mean().item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
else:
loss_rpn_cls = rpn_loss_cls.item()
loss_rpn_box = rpn_loss_box.item()
loss_rcnn_cls = RCNN_loss_cls.item()
loss_rcnn_box = RCNN_loss_bbox.item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
% (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end-start))
print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
if args.use_tfboard:
info = {
'loss': loss_temp,
'loss_rpn_cls': loss_rpn_cls,
'loss_rpn_box': loss_rpn_box,
'loss_rcnn_cls': loss_rcnn_cls,
'loss_rcnn_box': loss_rcnn_box
}
logger.add_scalars("logs_s_{}/losses".format(args.session), info, (epoch - 1) * iters_per_epoch + step)
loss_temp = 0
start = time.time()
save_name = os.path.join(output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
save_checkpoint({
'session': args.session,
'epoch': epoch + 1,
'model': fasterRCNN.module.state_dict() if args.mGPUs else fasterRCNN.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
'class_agnostic': args.class_agnostic,
}, save_name)
print('save model: {}'.format(save_name))
if args.use_tfboard:
logger.close()