-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_compatibility_rag.py
498 lines (402 loc) · 14.7 KB
/
test_compatibility_rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import logging
from typing import List
import pytest
from langchain import callbacks
from langchain_community.chat_models import BedrockChat
from langchain_community.embeddings import (
BedrockEmbeddings,
HuggingFaceInferenceAPIEmbeddings,
)
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_core.embeddings import Embeddings
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_vertexai import ChatVertexAI, VertexAIEmbeddings
from langchain_openai import (
AzureChatOpenAI,
AzureOpenAIEmbeddings,
ChatOpenAI,
OpenAIEmbeddings,
)
from vertexai.vision_models import Image, MultiModalEmbeddingModel
from e2e_tests.conftest import (
get_required_env,
get_vector_store_handler,
set_current_test_info,
)
from e2e_tests.langchain.nemo_guardrails import run_nemo_guardrails
from e2e_tests.langchain.rag_application import (
run_conversational_rag,
run_rag_custom_chain,
)
from e2e_tests.langchain.trulens import run_trulens_evaluation
from e2e_tests.test_utils import (
get_local_resource_path,
skip_test_due_to_implementation_not_supported,
)
from e2e_tests.test_utils.tracing import record_langsmith_sharelink
from e2e_tests.test_utils.vector_store_handler import VectorStoreImplementation
@pytest.fixture
def astra_db():
handler = get_vector_store_handler(VectorStoreImplementation.ASTRADB)
context = handler.before_test()
yield context
handler.after_test()
@pytest.fixture
def cassandra():
handler = get_vector_store_handler(VectorStoreImplementation.CASSANDRA)
context = handler.before_test()
yield context
handler.after_test()
def _chat_openai(**kwargs) -> callable:
return lambda: ChatOpenAI(
openai_api_key=get_required_env("OPENAI_API_KEY"), temperature=0, **kwargs
)
@pytest.fixture
def openai_gpt35turbo_llm():
model = "gpt-3.5-turbo"
return {"llm": _chat_openai(model=model, streaming=False), "nemo_config": None}
@pytest.fixture
def openai_gpt35turbo_llm_streaming():
model = "gpt-3.5-turbo"
return {"llm": _chat_openai(model=model, streaming=True), "nemo_config": None}
@pytest.fixture
def openai_gpt4_llm():
model = "gpt-4"
return {
"llm": _chat_openai(model=model, streaming=False),
"nemo_config": {"engine": "openai", "model": model},
}
@pytest.fixture
def openai_gpt4o_llm():
model = "gpt-4o"
return {
"llm": _chat_openai(model=model, streaming=False),
"nemo_config": {"engine": "openai", "model": model},
}
def _openai_embeddings(**kwargs) -> callable:
return lambda: OpenAIEmbeddings(
openai_api_key=get_required_env("OPENAI_API_KEY"), **kwargs
)
@pytest.fixture
def openai_ada002_embedding():
return _openai_embeddings(model="text-embedding-ada-002")
@pytest.fixture
def openai_3small_embedding():
return _openai_embeddings(model="text-embedding-3-small")
@pytest.fixture
def openai_3large_embedding():
return _openai_embeddings(model="text-embedding-3-large")
@pytest.fixture
def astra_vectorize_openai_small():
def call():
from astrapy.info import CollectionVectorServiceOptions
return {
"collection_vector_service_options": CollectionVectorServiceOptions(
provider="openai",
model_name="text-embedding-3-small",
),
"collection_embedding_api_key": get_required_env("OPENAI_API_KEY"),
}
return call
@pytest.fixture
def azure_openai_gpt35turbo_llm():
# model is configurable because it can be different from the deployment
# but the targeting model must be gpt-35-turbo
def llm():
return AzureChatOpenAI(
azure_deployment=get_required_env("AZURE_OPEN_AI_CHAT_MODEL_DEPLOYMENT"),
azure_endpoint=get_required_env("AZURE_OPENAI_ENDPOINT"),
openai_api_key=get_required_env("AZURE_OPENAI_API_KEY"),
openai_api_version="2023-07-01-preview",
)
return {
"llm": llm,
"nemo_config": None,
}
@pytest.fixture
def azure_openai_ada002_embedding():
def embedding():
# model is configurable because it can be different from the deployment
# but the targeting model must be ada-002
model_and_deployment = get_required_env(
"AZURE_OPEN_AI_EMBEDDINGS_MODEL_DEPLOYMENT"
)
return AzureOpenAIEmbeddings(
model=model_and_deployment,
deployment=model_and_deployment,
openai_api_key=get_required_env("AZURE_OPENAI_API_KEY"),
azure_endpoint=get_required_env("AZURE_OPENAI_ENDPOINT"),
openai_api_version="2023-05-15",
chunk_size=1,
)
return embedding
@pytest.fixture
def vertex_geminipro_llm():
def llm():
return ChatVertexAI(model_name="gemini-pro")
return {"llm": llm, "nemo_config": None}
@pytest.fixture
def vertex_gecko_embedding() -> callable:
return lambda: VertexAIEmbeddings(model_name="textembedding-gecko")
def _bedrock_chat(**kwargs) -> callable:
return lambda: BedrockChat(
region_name=get_required_env("BEDROCK_AWS_REGION"), **kwargs
)
@pytest.fixture
def bedrock_anthropic_claudev2_llm():
return {
"llm": _bedrock_chat(
model_id="anthropic.claude-v2", model_kwargs={"temperature": 0}
),
"nemo_config": None,
}
@pytest.fixture
def bedrock_mistral_mistral7b_llm():
return {
"llm": _bedrock_chat(model_id="mistral.mistral-7b-instruct-v0:2"),
"nemo_config": None,
}
@pytest.fixture
def bedrock_meta_llama2_llm():
return {
"llm": _bedrock_chat(model_id="meta.llama2-13b-chat-v1"),
"nemo_config": None,
}
@pytest.fixture
def bedrock_titan_embedding() -> callable:
return lambda: BedrockEmbeddings(
model_id="amazon.titan-embed-text-v1",
region_name=get_required_env("BEDROCK_AWS_REGION"),
)
@pytest.fixture
def bedrock_cohere_embedding() -> callable:
return lambda: BedrockEmbeddings(
model_id="cohere.embed-english-v3",
region_name=get_required_env("BEDROCK_AWS_REGION"),
)
@pytest.fixture
def huggingface_hub_flant5xxl_llm():
return {
"llm": lambda: HuggingFaceHub(
repo_id="google/flan-t5-xxl",
huggingfacehub_api_token=get_required_env("HUGGINGFACE_HUB_KEY"),
model_kwargs={"temperature": 1, "max_length": 256},
),
"nemo_config": None,
}
@pytest.fixture
def huggingface_hub_minilml6v2_embedding():
return lambda: HuggingFaceInferenceAPIEmbeddings(
api_key=get_required_env("HUGGINGFACE_HUB_KEY"),
model_name="sentence-transformers/all-MiniLM-l6-v2",
)
@pytest.fixture
def nvidia_aifoundation_embedqa4_embedding():
def embedding():
get_required_env("NVIDIA_API_KEY")
from langchain_nvidia_ai_endpoints.embeddings import NVIDIAEmbeddings
return NVIDIAEmbeddings(model="ai-embed-qa-4")
return embedding
@pytest.fixture
def nvidia_aifoundation_mixtral8x7b_llm():
def llm():
get_required_env("NVIDIA_API_KEY")
from langchain_nvidia_ai_endpoints import ChatNVIDIA
return ChatNVIDIA(
model="ai-mixtral-8x7b-instruct", temperature=0, max_tokens=2048
)
return {"llm": llm, "nemo_config": None}
@pytest.mark.parametrize(
"test_case",
["rag_custom_chain", "conversational_rag", "trulens", "nemo_guardrails"],
)
@pytest.mark.parametrize(
"vector_store",
["astra_db", "cassandra"],
)
@pytest.mark.parametrize(
"embedding,llm",
[
("openai_ada002_embedding", "openai_gpt35turbo_llm"),
("openai_3large_embedding", "openai_gpt35turbo_llm_streaming"),
("openai_3small_embedding", "openai_gpt4_llm"),
("astra_vectorize_openai_small", "openai_gpt4o_llm"),
("azure_openai_ada002_embedding", "azure_openai_gpt35turbo_llm"),
("vertex_gecko_embedding", "vertex_geminipro_llm"),
("bedrock_titan_embedding", "bedrock_anthropic_claudev2_llm"),
("bedrock_cohere_embedding", "bedrock_mistral_mistral7b_llm"),
("bedrock_cohere_embedding", "bedrock_meta_llama2_llm"),
# # ("huggingface_hub_minilml6v2_embedding", "huggingface_hub_flant5xxl_llm"),
(
"nvidia_aifoundation_embedqa4_embedding",
"nvidia_aifoundation_mixtral8x7b_llm",
),
],
)
def test_rag(test_case, vector_store, embedding, llm, request, record_property):
set_current_test_info(
"langchain::" + test_case,
f"{llm},{embedding},{vector_store}",
)
resolved_vector_store = request.getfixturevalue(vector_store)
resolved_embedding_fn = request.getfixturevalue(embedding)
resolved_llm_fn = request.getfixturevalue(llm)
_run_test(
test_case,
resolved_vector_store,
resolved_embedding_fn,
resolved_llm_fn,
record_property,
)
def _run_test(
test_case: str,
vector_store_context,
embedding_fn,
resolved_llm,
record_property,
):
# NeMo guardrails running only with certain LLMs
if test_case == "nemo_guardrails" and not resolved_llm["nemo_config"]:
skip_test_due_to_implementation_not_supported("nemo_guardrails")
embedding = embedding_fn()
vector_store_kwargs = {}
if isinstance(embedding, dict):
vector_store_kwargs = embedding
else:
vector_store_kwargs["embedding"] = embedding
vector_store = vector_store_context.new_langchain_vector_store(
**vector_store_kwargs
)
llm = resolved_llm["llm"]() # llm is a callable
if test_case == "rag_custom_chain":
run_rag_custom_chain(
vector_store=vector_store, llm=llm, record_property=record_property
)
elif test_case == "conversational_rag":
run_conversational_rag(
vector_store=vector_store,
llm=llm,
chat_memory=vector_store_context.new_langchain_chat_memory(),
record_property=record_property,
)
elif test_case == "trulens":
run_trulens_evaluation(vector_store=vector_store, llm=llm)
elif test_case == "nemo_guardrails":
# NeMo creates the LLM internally using the config
run_nemo_guardrails(
vector_store=vector_store, config=resolved_llm["nemo_config"]
)
else:
raise ValueError(f"Unknown test case: {test_case}")
@pytest.fixture
def vertex_gemini_multimodal_embedding():
return MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001"), 1408
@pytest.fixture
def vertex_gemini_pro_vision_llm():
return ChatVertexAI(model_name="gemini-pro-vision")
@pytest.fixture
def vertex_gemini_pro_llm():
return ChatVertexAI(model_name="gemini-pro")
@pytest.fixture
def gemini_pro_vision_llm():
return ChatGoogleGenerativeAI(
model="gemini-pro-vision", google_api_key=get_required_env("GOOGLE_API_KEY")
)
@pytest.fixture
def gemini_pro_llm():
return ChatGoogleGenerativeAI(
model="gemini-pro", google_api_key=get_required_env("GOOGLE_API_KEY")
)
@pytest.mark.parametrize(
"vector_store",
["astra_db", "cassandra"],
)
@pytest.mark.parametrize(
"embedding,llm",
[
# disable due to this bug: https://github.com/googleapis/python-aiplatform/issues/3227
# ("vertex_gemini_multimodal_embedding", "vertex_gemini_pro_vision_llm"),
("vertex_gemini_multimodal_embedding", "gemini_pro_vision_llm"),
],
)
def test_multimodal(vector_store, embedding, llm, request, record_property):
set_current_test_info(
"langchain::multimodal_rag",
f"{llm},{embedding},{vector_store}",
)
resolved_embedding, embedding_size = request.getfixturevalue(embedding)
class FakeEmbeddings(Embeddings):
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [[0.0] * embedding_size] * len(texts)
def embed_query(self, text: str) -> List[float]:
return [0.0] * embedding_size
enhanced_vector_store = request.getfixturevalue(
vector_store
).new_langchain_vector_store(embedding=FakeEmbeddings())
resolved_llm = request.getfixturevalue(llm)
tree_image = get_local_resource_path("tree.jpeg")
products = [
{
"name": "Coffee Machine Ultra Cool",
"image": get_local_resource_path("coffee_machine.jpeg"),
},
{"name": "Tree", "image": tree_image},
{"name": "Another Tree", "image": tree_image},
{"name": "Another Tree 2", "image": tree_image},
{"name": "Another Tree 3", "image": tree_image},
]
for p in products:
img = Image.load_from_file(p["image"])
embeddings = resolved_embedding.get_embeddings(
image=img, contextual_text=p["name"]
)
p["$vector"] = embeddings.image_embedding
enhanced_vector_store.put_document(
p["name"], p["name"], {}, embeddings.image_embedding
)
query_image_path = get_local_resource_path("coffee_maker_part.png")
img = Image.load_from_file(query_image_path)
embeddings = resolved_embedding.get_embeddings(
image=img, contextual_text="Coffee Maker Part"
)
documents = enhanced_vector_store.search_documents(embeddings.image_embedding, 3)
image_message = {
"type": "image_url",
"image_url": {"url": query_image_path},
}
docs_str = ", ".join([f"'{p}'" for p in documents])
prompt = f"Tell me which one of these products it is part of. Only include product from the ones below: {docs_str}."
logging.info(f"Prompt: {prompt}")
text_message = {
"type": "text",
"text": prompt,
}
message = HumanMessage(content=[text_message, image_message])
with callbacks.collect_runs() as cb:
response = resolved_llm([message])
run_id = cb.traced_runs[0].id
record_langsmith_sharelink(run_id, record_property)
answer = str(response.content)
assert (
"Coffee Machine Ultra Cool" in answer
), f"Expected Coffee Machine Ultra Cool in the answer but got: {answer}"
@pytest.mark.parametrize("chat", ["vertex_gemini_pro_llm", "gemini_pro_llm"])
def test_chat(chat, request, record_property):
set_current_test_info(
"langchain::chat",
chat,
)
chat_model = request.getfixturevalue(chat)
prompt = ChatPromptTemplate.from_messages(
[("human", "Hello! Where Archimede was born?")]
)
chain = prompt | chat_model
with callbacks.collect_runs() as cb:
response = chain.invoke({})
run_id = cb.traced_runs[0].id
record_langsmith_sharelink(run_id, record_property)
assert "Syracuse" in str(
response.content
), f"Expected Syracuse in the answer but got: {str(response.content)}"