-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
253 lines (213 loc) · 9.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import sys
import os
import datetime
sys.path.append(os.path.dirname(os.path.dirname(sys.path[0]))) # nopep8
from src.utilities import *
import time
import torch
from torch import nn
import numpy as np
import pickle
from torch.cuda.amp import autocast, GradScaler
from loss import StemsMultiResolutionSTFTLoss
from tqdm import tqdm
import soundfile as sf
import wandb
from config import *
def train(audio_model, train_loader, test_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('running on ' + str(device))
torch.set_grad_enabled(True)
wandb.init(project="ast-ddsp-mss")
wandb.watch(audio_model, log_freq=100)
# Initialize all of the statistics we want to keep track of
batch_time = AverageMeter()
per_sample_time = AverageMeter()
data_time = AverageMeter()
per_sample_data_time = AverageMeter()
loss_meter = AverageMeter()
per_sample_dnn_time = AverageMeter()
progress = []
# best_cum_mAP is checkpoint ensemble from the first epoch to the best epoch
global_step, epoch = 0, 0
start_time = time.time()
exp_dir = EXP_DIR
def _save_progress():
progress.append([epoch, global_step, time.time() - start_time])
with open("%s/progress.pkl" % exp_dir, "wb") as f:
pickle.dump(progress, f)
if not isinstance(audio_model, nn.DataParallel):
audio_model = nn.DataParallel(audio_model)
audio_model = audio_model.to(device)
# Set up the optimizer
trainables = [p for p in audio_model.parameters() if p.requires_grad]
print('Total parameter number is : {:.3f} million'.format(
sum(p.numel() for p in audio_model.parameters()) / 1e6))
print('Total trainable parameter number is : {:.3f} million'.format(
sum(p.numel() for p in trainables) / 1e6))
optimizer = torch.optim.Adam(
trainables, LR, weight_decay=5e-7, betas=(0.95, 0.999))
# Load the model
model_checkpoint, opt_checkpoint = last_checkpoint()
if model_checkpoint != "" and opt_checkpoint != "":
audio_model.load_state_dict(torch.load(model_checkpoint))
optimizer.load_state_dict(torch.load(opt_checkpoint))
epoch = int(model_checkpoint.split(".")[1])
global_step = epoch * len(train_loader)
warmup = WARMUP
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, list(
range(LR_SCHEDULER_START, 1000, LR_SCHEDULER_STEP)), gamma=LR_SCHEDULER_DECAY, last_epoch=epoch if epoch > 1 else -1)
loss_fn = StemsMultiResolutionSTFTLoss()
print('now training with loss function: {:s}, learning rate scheduler: {:s}'.format(str(loss_fn), str(scheduler)))
print('The learning rate scheduler starts at {:d} epoch with decay rate of {:.3f} every {:d} epochs'.format(
LR_SCHEDULER_START, LR_SCHEDULER_DECAY, LR_SCHEDULER_STEP))
epoch += 1
# # for amp
# scaler = GradScaler()
print("current #steps=%s, #epochs=%s" % (global_step, epoch))
print("start training...")
audio_model.train()
while epoch < N_EPOCHS + 1:
begin_time = time.time()
end_time = time.time()
audio_model.train()
print('---------------')
print(datetime.datetime.now())
print("current #epochs=%s, #steps=%s" % (epoch, global_step))
for i, tracks in tqdm(enumerate(train_loader)):
B = tracks.size(0)
tracks = tracks.to(device, non_blocking=True)
mixture = tracks[:, 0, :]
stems = tracks[:, 1:, :]
data_time.update(time.time() - end_time)
per_sample_data_time.update(
(time.time() - end_time) / mixture.shape[0])
dnn_start_time = time.time()
# first several steps for warm-up
if global_step <= 1000 and global_step % 50 == 0 and warmup == True:
warm_lr = (global_step / 1000) * LR
for param_group in optimizer.param_groups:
param_group['lr'] = warm_lr
print(
'warm-up learning rate is {:f}'.format(optimizer.param_groups[0]['lr']))
with autocast():
generated_stems = audio_model(mixture)
loss = loss_fn(generated_stems, stems)
# optimization if amp is not used
optimizer.zero_grad()
loss.backward()
optimizer.step()
# # optimiztion if amp is used
# optimizer.zero_grad()
# scaler.scale(loss).backward()
# scaler.step(optimizer)
# scaler.update()
# record loss
loss_meter.update(loss.item(), B)
batch_time.update(time.time() - end_time)
per_sample_time.update((time.time() - end_time)/mixture.shape[0])
per_sample_dnn_time.update(
(time.time() - dnn_start_time)/mixture.shape[0])
print_step = global_step % N_PRINT_STEPS == 0
early_print_step = epoch == 0 and global_step % (
N_PRINT_STEPS/10) == 0
print_step = print_step or early_print_step
if print_step and global_step != 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Per Sample Total Time {per_sample_time.avg:.5f}\t'
'Per Sample Data Time {per_sample_data_time.avg:.5f}\t'
'Per Sample DNN Time {per_sample_dnn_time.avg:.5f}\t'
'Train Loss {loss_meter.avg:.4f}\t'.format(
epoch, i, len(train_loader), per_sample_time=per_sample_time, per_sample_data_time=per_sample_data_time,
per_sample_dnn_time=per_sample_dnn_time, loss_meter=loss_meter), flush=True)
if np.isnan(loss_meter.avg):
raise Exception("Training diverged...")
end_time = time.time()
global_step += 1
# Save the model
if epoch % SAVE_EPOCHS == 0:
torch.save(audio_model.state_dict(),
"%s/models/audio_model.%d.pth" % (exp_dir, epoch))
torch.save(optimizer.state_dict(),
"%s/models/optim_state.%d.pth" % (exp_dir, epoch))
# Remove old checkpoints
checkpoints = os.listdir("%s/models" % exp_dir)
checkpoints = [int(checkpoint.split(".")[1]) for checkpoint in checkpoints]
checkpoints = list(set(checkpoints))
checkpoints.sort()
if len(checkpoints) > MAX_CHECKPOINTS:
for checkpoint in checkpoints[:-MAX_CHECKPOINTS]:
os.remove("%s/models/audio_model.%d.pth" % (exp_dir, checkpoint))
os.remove("%s/models/optim_state.%d.pth" % (exp_dir, checkpoint))
# Validation
if epoch % VALIDATION_EPOCHS == 0:
print('start validation')
valid_loss = validate(audio_model, test_loader, epoch, loss_fn, exp_dir)
print("valid_loss: {:.6f}".format(valid_loss))
wandb.log({"valid_loss": valid_loss}, step=epoch)
print('validation finished')
print("train_loss: {:.6f}".format(loss_meter.avg))
wandb.log({"loss": loss_meter.avg}, step=epoch)
if LR_SCHEDULER:
scheduler.step()
print('Epoch-{0} lr: {1}'.format(epoch,
optimizer.param_groups[0]['lr']))
_save_progress()
finish_time = time.time()
print('epoch {:d} training time: {:.3f}'.format(
epoch, finish_time-begin_time))
epoch += 1
batch_time.reset()
per_sample_time.reset()
data_time.reset()
per_sample_data_time.reset()
loss_meter.reset()
per_sample_dnn_time.reset()
def validate(audio_model, val_loader, epoch, loss_fn, exp_dir):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_time = AverageMeter()
if not isinstance(audio_model, nn.DataParallel):
audio_model = nn.DataParallel(audio_model)
audio_model = audio_model.to(device)
# switch to evaluate mode
audio_model.eval()
end = time.time()
A_loss = []
with torch.no_grad():
for i, tracks in tqdm(enumerate(val_loader)):
B = tracks.size(0)
tracks = tracks.to(device, non_blocking=True)
mixture = tracks[:, 0, :]
stems = tracks[:, 1:, :]
# compute output
generated_stems = audio_model(mixture)
# compute the loss
loss = loss_fn(generated_stems, stems)
A_loss.append(loss.to('cpu').detach())
batch_time.update(time.time() - end)
end = time.time()
# Save the audio
if loss < 1.5 and epoch % SAVE_EPOCHS == 0:
save_audio(
mixture.to('cpu').detach().numpy(),
generated_stems.to('cpu').detach().numpy(),
stems.to('cpu').detach().numpy(), f"{exp_dir}/audio/val_{epoch}/{i}"
)
loss = np.mean(A_loss)
return loss
def save_audio(mixture, generted_stems, target_stems, file_name):
"""
Save the audio files from the generated stems
Args:
generted_stems: the generated stems from the model
target_stems: the target stems
file_name: the file name of the generated stems
"""
os.makedirs(file_name, exist_ok=True)
mix = np.ravel(mixture)
sf.write(file_name + '/mixture.wav', mix, SR)
for i in range(generted_stems.shape[1]):
gen = np.ravel(generted_stems[:, i, :])
tar = np.ravel(target_stems[:, i, :])
sf.write(file_name + '/target_' + str(i) + '.wav', tar, SR)
sf.write(file_name + '/stem_' + str(i) + '.wav', gen, SR)