-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
189 lines (154 loc) · 7.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from augmentations import SSDAugmentation
import os
import time
import random
import tools
import torch
import torch.optim as optim
import torch.utils.data as data
import numpy as np
import argparse
from voc0712 import *
parser = argparse.ArgumentParser(description='YOLO-v2 Detection')
parser.add_argument('-v', '--version', default='yolo_v2',
help='yolo_v2, yolo_v3, tiny_yolo_v2, tiny_yolo_v3')
parser.add_argument('-d', '--dataset', default='VOC',
help='VOC or COCO dataset')
parser.add_argument('-hr', '--high_resolution', type=int, default=0,
help='1: use high resolution to pretrain; 0: else not.')
parser.add_argument('-ms', '--multi_scale', type=int, default=0,
help='1: use multi-scale trick; 0: else not')
parser.add_argument('-fl', '--use_focal', type=int, default=0,
help='0: use focal loss; 1: else not;')
parser.add_argument('--batch_size', default=32, type=int,
help='Batch size for training')
parser.add_argument('--lr', default=1e-3, type=float,
help='initial learning rate')
parser.add_argument('--obj', default=5.0, type=float,
help='the weight of obj loss')
parser.add_argument('--noobj', default=1.0, type=float,
help='the weight of noobj loss')
parser.add_argument('-wp', '--warm_up', type=str, default='yes',
help='yes or no to choose using warmup strategy to train')
parser.add_argument('--wp_epoch', type=int, default=6,
help='The upper bound of warm-up')
parser.add_argument('--weights', type=str, default=None,
help='load weights to resume training')
parser.add_argument('--total_epoch', type=int, default=250,
help='total_epoch')
parser.add_argument('--dataset_root', default="./VOCdevkit",
help='Location of VOC root directory')
parser.add_argument('--num_classes', default=20, type=int,
help='The number of dataset classes')
parser.add_argument('--momentum', default=0.9, type=float,
help='Momentum value for optim')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float,
help='Gamma update for SGD')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--gpu_ind', default=0, type=int,
help='To choose your gpu.')
parser.add_argument('--save_folder', default='./weights', type=str,
help='Gamma update for SGD')
parser.add_argument('--fine_tune', default=0, type=int,
help='fine tune the model trained on MSCOCO.')
args = parser.parse_args()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# setup_seed(20)
def train(model, device):
global cfg, hr
# set GPU
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
dataset = VOCDetection(root=args.dataset_root, transform=SSDAugmentation(cfg['min_dim']))
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True)
print("----------------------------------------Object Detection--------------------------------------------")
print("Let's train OD network !")
net = model
net = net.to(device)
lr = args.lr
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
iter_per_epoch = int(np.ceil(len(dataset)/args.batch_size))
total_iter = iter_per_epoch * args.total_epoch
warmup_iter = iter_per_epoch * 6
scheduler = tools.LRScheduler(optimizer=optimizer,
warmup_iter=warmup_iter,
total_iter=total_iter,
target_lr=lr)
# loss counters
print("----------------------------------------------------------")
print('Loading the dataset...')
print('Training on:', dataset.name)
print('The dataset size:', len(dataset))
print('The obj weight : ', args.obj)
print('The noobj weight : ', args.noobj)
print("----------------------------------------------------------")
# create batch iterator
iteration = 0
start_epoch = 0
if args.weights is not None:
chkpt = torch.load(args.weights, map_location=device)
start_epoch = chkpt['epoch']
iteration = chkpt['iteration']
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
chkpt['optimizer'] = {k: v for k, v in chkpt['optimizer'].items()}
model.load_state_dict(chkpt['model'], strict=False)
optimizer.load_state_dict(chkpt['optimizer'])
# start training
for epoch in range(start_epoch, args.total_epoch):
for images, bboxes_label_list in data_loader:
iteration += 1
scheduler.step(iteration)
images = images.to(device)
input_size = images.shape[2:]
# forward
t0 = time.time()
out, _ = net(images)
targets = tools.build_targets(model,
bboxes_label_list,
batch_size=len(images),
input_size=input_size,
dtype=out.dtype)
targets = targets.to(device)
loss = model.yololoss(out, targets)
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
t1 = time.time()
if iteration % 10 == 0:
print('timer: %.4f sec.' % (t1 - t0))
print('Epoch[%d / %d]' % (epoch + 1, args.total_epoch) + ' || iter[%d / %d] ' % (iteration, total_iter) + \
' || Loss: %.4f ||' % (loss.item()) + ' || lr: %.8f ||' % (optimizer.param_groups[0]['lr']) + ' || input size: %d ||' %
input_size[0], end=' ')
if (epoch + 1) % 10 == 0:
chkpt = {'epoch': epoch + 1,
'iteration': iteration,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
print('Saving state, epoch:', epoch + 1)
torch.save(chkpt,
args.save_folder + '/' + 'yolov3tiny' + '_' +
repr(epoch + 1) + '.pth')
if __name__ == '__main__':
global hr, cfg
hr = False
device = 'cuda'
if args.high_resolution == 1:
hr = True
cfg = voc_ab
from model import MnasYOLOv3
yolo_net = MnasYOLOv3()
print('Let us train tiny-yolo-v3 on the VOC0712 dataset ......')
train(yolo_net, device)