Skip to content

Commit 5b8922d

Browse files
authored
Merge pull request #860 from dianna-ai/875-update-texts-weather-TS-usecase
Update weather TS example classes
2 parents 1755e0b + 87e2265 commit 5b8922d

File tree

4 files changed

+423
-421
lines changed

4 files changed

+423
-421
lines changed

tutorials/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ pip install .[notebooks]
2525
||[Imagenet](https://image-net.org/download.php) |$1000$ classes natural images *classificaiton* | <img width="94" alt="ImageNet_autocrop" src="https://user-images.githubusercontent.com/3244249/152542090-fd78fde1-6dec-43b6-a7ae-eea964b8ae28.png">|
2626
|*Text*| [Stanford sentiment treebank](https://nlp.stanford.edu/sentiment/index.html) |Positive or negative movie reviews sentiment *classificaiton* | <img width="25" alt="nlp-logo_half_size" src="https://user-images.githubusercontent.com/3244249/152540890-c8e1e37d-f0cc-4f84-80a4-2c59176cbf4c.png">|
2727
|*Timeseries* | [Coffee dataset](https://www.timeseriesclassification.com/description.php?Dataset=Coffee) | Binary *classificaiton* of Robusta and Aribica coffee beans| <img width="25" alt="Coffe Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/9ab50a0f-5da3-41d2-80e9-70d2c8769162">|
28-
| | [Weather dataset](https://zenodo.org/record/7525955) |Binary *classification* (summer/winter) of temperature time-series |<img width="25" alt="Weather Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/3ff3d639-ed2f-4a38-b7ac-957c984bce9f">|
28+
| | [Weather dataset](https://zenodo.org/record/7525955) |Binary *classification* (warm/cold season) of temperature time-series |<img width="25" alt="Weather Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/3ff3d639-ed2f-4a38-b7ac-957c984bce9f">|
2929
|*Tabular*| [Penguin dataset](https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris)| $3$ penguin spicies (Adele, Chinstrap, Gentoo) *classificaiton* | <img width="75" alt="Penguin Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/c7716ad3-f992-4557-80d9-1d8178c7ed57"> | |
3030
| | [Weather dataset](https://zenodo.org/record/7525955) | Next day sunshine hours prediction (*regression*) | <img width="25" alt="Weather Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/3ff3d639-ed2f-4a38-b7ac-957c984bce9f">|
3131

tutorials/explainers/LIME/lime_timeseries_weather.ipynb

+5-5
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,7 @@
103103
"metadata": {},
104104
"source": [
105105
"#### 2 - Define an \"expert\" model to verify RISE for timeseries\n",
106-
"We can define an 'expert' model to test RISE. This expert model decides it's summer if the mean temp is above the threshold, and winter in other cases."
106+
"We can define an 'expert' model to test RISE. This expert model decides it's a warm season (conditionally labeled \"summer\") if the mean temp over several days is above a threshold, or a cold (\"winter\") season in other cases."
107107
]
108108
},
109109
{
@@ -557,7 +557,7 @@
557557
"metadata": {},
558558
"source": [
559559
"Given how the classification model is trained, we prepare the testing data for prediction. <br>\n",
560-
"To make it simpler, we only choose one location and make it a binary classification task, to determine whether it is summer or winter."
560+
"To simplify, we only choose one location and make it a binary classification task, to determine whether it is warm (\"summer\") or cold (\"winter\")."
561561
]
562562
},
563563
{
@@ -687,8 +687,8 @@
687687
"cell_type": "markdown",
688688
"metadata": {},
689689
"source": [
690-
"We label the data based on the seasons. <br>\n",
691-
"To simplify the problem, we make it a binary classification task and only select summer and winter. <br>"
690+
"We label the data based on all the seasons. <br>\n",
691+
"To simplify the problem, we make it a binary classification task and only select warm (\"summer\") and cold (\"winter\"). <br>"
692692
]
693693
},
694694
{
@@ -931,7 +931,7 @@
931931
"name": "python",
932932
"nbconvert_exporter": "python",
933933
"pygments_lexer": "ipython3",
934-
"version": "3.9.1"
934+
"version": "3.10.12"
935935
}
936936
},
937937
"nbformat": 4,

tutorials/explainers/RISE/rise_timeseries_weather.ipynb

+5-5
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@
138138
},
139139
"source": [
140140
"#### 2 - Define an \"expert\" model to verify RISE for timeseries\n",
141-
"We can define an 'expert' model to test RISE. This expert model decides it's summer if the mean temp is above the threshold, and winter in other cases."
141+
"We can define an 'expert' model to test RISE. This expert model decides it's a warm season (conditionally labeled \"summer\") if the mean temp over several days is above a threshold, or a cold (\"winter\") season in other cases."
142142
]
143143
},
144144
{
@@ -668,7 +668,7 @@
668668
},
669669
"source": [
670670
"Given how the classification model is trained, we prepare the testing data for prediction. <br>\n",
671-
"To make it simpler, we only choose one location and make it a binary classification task, to determine whether it is summer or winter."
671+
"To simplify, we only choose one location and make it a binary classification task, to determine whether the TS data indicate a warm (\"summer\") or a cold (\"winter\") season."
672672
]
673673
},
674674
{
@@ -818,8 +818,8 @@
818818
}
819819
},
820820
"source": [
821-
"We label the data based on the seasons. <br>\n",
822-
"To simplify the problem, we make it a binary classification task and only select summer and winter. <br>"
821+
"We label the data based on all the seasons. <br>\n",
822+
"To simplify the problem, we make it a binary classification task and only select warm (\"summer\") and cold (\"winter\"). <br>"
823823
]
824824
},
825825
{
@@ -1130,7 +1130,7 @@
11301130
"name": "python",
11311131
"nbconvert_exporter": "python",
11321132
"pygments_lexer": "ipython3",
1133-
"version": "3.9.1"
1133+
"version": "3.10.12"
11341134
},
11351135
"vscode": {
11361136
"interpreter": {

0 commit comments

Comments
 (0)