-
-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathanalogsensor.cpp
789 lines (723 loc) · 34.3 KB
/
analogsensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "analogsensor.h"
#include "emsesp.h"
namespace emsesp {
uuid::log::Logger AnalogSensor::logger_{F_(analogsensor), uuid::log::Facility::DAEMON};
void AnalogSensor::start() {
reload(true); // fetch the list of sensors from our customization service
if (!analog_enabled_) {
return;
}
analogSetAttenuation(ADC_2_5db); // for all channels 1.5V
LOG_INFO("Starting Analog Sensor service");
// Add API calls
Command::add(
EMSdevice::DeviceType::ANALOGSENSOR,
F_(setvalue),
[&](const char * value, const int8_t id) { return command_setvalue(value, id); },
FL_(setiovalue_cmd),
CommandFlag::ADMIN_ONLY);
char topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
snprintf(topic, sizeof(topic), "%s/#", F_(analogsensor));
Mqtt::subscribe(EMSdevice::DeviceType::ANALOGSENSOR, topic, nullptr); // use empty function callback
}
// load settings from the customization file, sorts them and initializes the GPIOs
void AnalogSensor::reload(bool get_nvs) {
EMSESP::webSettingsService.read([&](WebSettings & settings) { analog_enabled_ = settings.analog_enabled; });
#if defined(EMSESP_STANDALONE)
analog_enabled_ = true; // for local offline testing
#endif
for (auto sensor : sensors_) {
remove_ha_topic(sensor.type(), sensor.gpio());
sensor.ha_registered = false;
}
if (!analog_enabled_) {
sensors_.clear();
return;
}
// load the list of analog sensors from the customization service
// and store them locally and then activate them
EMSESP::webCustomizationService.read([&](WebCustomization & settings) {
auto it = sensors_.begin();
for (auto & sensor_ : sensors_) {
// update existing sensors
bool found = false;
for (const auto & sensor : settings.analogCustomizations) { // search customlist
if (sensor_.gpio() == sensor.gpio) {
// for output sensors set value to new start-value
if ((sensor.type == AnalogType::COUNTER || sensor.type >= AnalogType::DIGITAL_OUT)
&& (sensor_.type() != sensor.type || sensor_.offset() != sensor.offset || sensor_.factor() != sensor.factor)) {
sensor_.set_value(sensor.offset);
}
sensor_.set_name(sensor.name);
sensor_.set_type(sensor.type);
sensor_.set_offset(sensor.offset);
sensor_.set_factor(sensor.factor);
sensor_.set_uom(sensor.uom);
sensor_.ha_registered = false;
found = true;
}
}
if (!found) {
sensors_.erase(it);
}
it++;
}
// add new sensors from list
for (const auto & sensor : settings.analogCustomizations) {
bool found = false;
for (const auto & sensor_ : sensors_) {
if (sensor_.gpio() == sensor.gpio) {
found = true;
}
}
if (!found) {
sensors_.emplace_back(sensor.gpio, sensor.name, sensor.offset, sensor.factor, sensor.uom, sensor.type);
sensors_.back().ha_registered = false; // this will trigger recreate of the HA config
if (sensor.type == AnalogType::COUNTER || sensor.type >= AnalogType::DIGITAL_OUT) {
sensors_.back().set_value(sensor.offset);
} else {
sensors_.back().set_value(0); // reset value only for new sensors
}
}
if (sensor.type == AnalogType::COUNTER || sensor.type >= AnalogType::DIGITAL_OUT) {
Command::add(
EMSdevice::DeviceType::ANALOGSENSOR,
sensor.name.c_str(),
[&](const char * value, const int8_t id) { return command_setvalue(value, sensor.gpio); },
sensor.type == AnalogType::COUNTER ? FL_(counter)
: sensor.type == AnalogType::DIGITAL_OUT ? FL_(digital_out)
: FL_(pwm),
CommandFlag::ADMIN_ONLY);
}
}
return true;
});
// sort the list based on GPIO (id)
// std::sort(sensors_.begin(), sensors_.end(), [](const Sensor & a, const Sensor & b) { return a.id() < b.id(); });
// activate each sensor
for (auto & sensor : sensors_) {
sensor.ha_registered = false; // force HA configs to be re-created
// first check if the GPIO is valid. If not, force set it to disabled
if (!System::is_valid_gpio(sensor.gpio())) {
LOG_WARNING("Bad GPIO %d for Sensor %s. Disabling.", sensor.gpio(), sensor.name().c_str());
sensor.set_type(AnalogType::NOTUSED);
continue; // skip this loop pass
}
if (sensor.type() == AnalogType::ADC) {
LOG_DEBUG("ADC Sensor on GPIO %02d", sensor.gpio());
// analogSetPinAttenuation does not work with analogReadMilliVolts
sensor.analog_ = 0; // initialize
sensor.last_reading_ = 0;
} else if (sensor.type() == AnalogType::COUNTER) {
LOG_DEBUG("I/O Counter on GPIO %02d", sensor.gpio());
pinMode(sensor.gpio(), INPUT_PULLUP);
#if CONFIG_IDF_TARGET_ESP32
if (sensor.gpio() == 25 || sensor.gpio() == 26) {
dacWrite(sensor.gpio(), 255);
}
#elif CONFIG_IDF_TARGET_ESP32S2
if (sensor.gpio() == 23 || sensor.gpio() == 24) {
dacWrite(sensor.gpio(), 255);
}
#endif
sensor.polltime_ = 0;
sensor.poll_ = digitalRead(sensor.gpio());
if (double_t val = EMSESP::nvs_.getDouble(sensor.name().c_str(), 0)) {
sensor.set_value(val);
}
publish_sensor(sensor);
} else if (sensor.type() == AnalogType::TIMER || sensor.type() == AnalogType::RATE) {
LOG_DEBUG("Timer/Rate on GPIO %02d", sensor.gpio());
pinMode(sensor.gpio(), INPUT_PULLUP);
sensor.polltime_ = uuid::get_uptime();
sensor.last_polltime_ = uuid::get_uptime();
sensor.poll_ = digitalRead(sensor.gpio());
sensor.set_offset(0);
sensor.set_value(0);
publish_sensor(sensor);
} else if (sensor.type() == AnalogType::DIGITAL_IN) {
LOG_DEBUG("Digital Read on GPIO %02d", sensor.gpio());
pinMode(sensor.gpio(), INPUT_PULLUP);
sensor.set_value(digitalRead(sensor.gpio())); // initial value
sensor.set_uom(0); // no uom, just for safe measures
sensor.polltime_ = 0;
sensor.poll_ = digitalRead(sensor.gpio());
publish_sensor(sensor);
} else if (sensor.type() == AnalogType::DIGITAL_OUT) {
LOG_DEBUG("Digital Write on GPIO %02d", sensor.gpio());
pinMode(sensor.gpio(), OUTPUT);
#if CONFIG_IDF_TARGET_ESP32
if (sensor.gpio() == 25 || sensor.gpio() == 26) {
if (sensor.offset() > 255) {
sensor.set_offset(255);
} else if (sensor.offset() < 0) {
sensor.set_offset(0);
}
dacWrite(sensor.gpio(), sensor.offset());
sensor.set_value(sensor.offset());
} else
#elif CONFIG_IDF_TARGET_ESP32S2
if (sensor.gpio() == 23 || sensor.gpio() == 24) {
if (sensor.offset() > 255) {
sensor.set_offset(255);
} else if (sensor.offset() < 0) {
sensor.set_offset(0);
}
dacWrite(sensor.gpio(), sensor.offset());
sensor.set_value(sensor.offset());
} else
#endif
{
if (sensor.uom() == 0) { // set state from NVS
if (!get_nvs || EMSESP::nvs_.getChar(sensor.name().c_str(), -1) == -1) {
EMSESP::nvs_.putChar(sensor.name().c_str(), (int8_t)sensor.offset());
} else {
sensor.set_offset(EMSESP::nvs_.getChar(sensor.name().c_str()));
}
}
digitalWrite(sensor.gpio(), sensor.offset() * sensor.factor() > 0 ? 1 : 0);
sensor.set_value(sensor.offset());
}
publish_sensor(sensor);
} else if (sensor.type() >= AnalogType::PWM_0 && sensor.type() <= AnalogType::PWM_2) {
LOG_DEBUG("PWM output on GPIO %02d", sensor.gpio());
#if ESP_IDF_VERSION_MAJOR >= 5
ledcAttach(sensor.gpio(), sensor.factor(), 13);
#else
uint8_t channel = sensor.type() - AnalogType::PWM_0;
ledcSetup(channel, sensor.factor(), 13);
ledcAttachPin(sensor.gpio(), channel);
#endif
if (sensor.offset() > 100) {
sensor.set_offset(100);
} else if (sensor.offset() < 0) {
sensor.set_offset(0);
}
#if ESP_IDF_VERSION_MAJOR >= 5
ledcWrite(sensor.gpio(), (uint32_t)(sensor.offset() * 8191 / 100));
#else
ledcWrite(channel, (uint32_t)(sensor.offset() * 8191 / 100));
#endif
sensor.set_value(sensor.offset());
sensor.set_uom(DeviceValueUOM::PERCENT);
publish_sensor(sensor);
}
}
}
// measure input sensors and moving average adc
void AnalogSensor::measure() {
static uint32_t measure_last_ = uuid::get_uptime() - MEASURE_ANALOG_INTERVAL;
// measure interval 500ms for adc sensors
if ((uuid::get_uptime() - measure_last_) >= MEASURE_ANALOG_INTERVAL) {
measure_last_ = uuid::get_uptime();
// go through the list of adc sensors
for (auto & sensor : sensors_) {
if (sensor.type() == AnalogType::ADC) {
uint16_t a = analogReadMilliVolts(sensor.gpio()); // e.g. ADC1_CHANNEL_0_GPIO_NUM
if (!sensor.analog_) { // init first time
sensor.analog_ = a;
sensor.sum_ = a * 512;
} else { // simple moving average filter
sensor.sum_ = (sensor.sum_ * 511) / 512 + a;
sensor.analog_ = sensor.sum_ / 512;
}
// detect change with little hysteresis on raw mV value
if (sensor.last_reading_ + 1 < sensor.analog_ || sensor.last_reading_ > sensor.analog_ + 1) {
sensor.set_value(((int32_t)sensor.analog_ - sensor.offset()) * sensor.factor());
sensor.last_reading_ = sensor.analog_;
sensorreads_++;
changed_ = true;
publish_sensor(sensor);
}
}
}
}
// poll digital io every time with debounce
// go through the list of digital sensors
for (auto & sensor : sensors_) {
if (sensor.type() == AnalogType::DIGITAL_IN || sensor.type() == AnalogType::COUNTER || sensor.type() == AnalogType::TIMER
|| sensor.type() == AnalogType::RATE) {
auto old_value = sensor.value(); // remember current value before reading
auto current_reading = digitalRead(sensor.gpio());
if (sensor.poll_ != current_reading) { // check for pinchange
sensor.polltime_ = uuid::get_uptime(); // remember time of pinchange
sensor.poll_ = current_reading;
}
// debounce and check for real pinchange
if (uuid::get_uptime() - sensor.polltime_ >= 15 && sensor.poll_ != sensor.last_reading_) {
sensor.last_reading_ = sensor.poll_;
if (sensor.type() == AnalogType::DIGITAL_IN) {
sensor.set_value(sensor.poll_);
} else if (!sensor.poll_) { // falling edge
if (sensor.type() == AnalogType::COUNTER) {
sensor.set_value(old_value + sensor.factor());
// EMSESP::nvs_.putDouble(sensor.name().c_str(), sensor.value());
} else if (sensor.type() == AnalogType::RATE) { // default uom: Hz (1/sec) with factor 1
sensor.set_value(sensor.factor() * 1000 / (sensor.polltime_ - sensor.last_polltime_));
} else if (sensor.type() == AnalogType::TIMER) { // default seconds with factor 1
sensor.set_value(sensor.factor() * (sensor.polltime_ - sensor.last_polltime_) / 1000);
}
sensor.last_polltime_ = sensor.polltime_;
}
}
// see if there is a change and increment # reads
if (old_value != sensor.value()) {
sensorreads_++;
changed_ = true;
publish_sensor(sensor);
}
}
}
// store counter-values only every hour to reduce flash wear
static uint8_t lastSaveHour = 0;
time_t now = time(nullptr);
tm * tm_ = localtime(&now);
if (tm_->tm_hour != lastSaveHour) {
lastSaveHour = tm_->tm_hour;
store_counters();
}
}
// store counters to NVS, called every hour, on restart and update
void AnalogSensor::store_counters() {
for (auto & sensor : sensors_) {
if (sensor.type() == AnalogType::COUNTER) {
if (sensor.value() != EMSESP::nvs_.getDouble(sensor.name().c_str())) {
EMSESP::nvs_.putDouble(sensor.name().c_str(), sensor.value());
}
}
}
}
void AnalogSensor::loop() {
if (!analog_enabled_) {
return;
}
measure(); // take the measurements
}
// update analog information name and offset
// a type value of -1 is used to delete the sensor
bool AnalogSensor::update(uint8_t gpio, std::string & name, double offset, double factor, uint8_t uom, int8_t type, bool deleted) {
// first see if we can find the sensor in our customization list
bool found_sensor = false;
EMSESP::webCustomizationService.update([&](WebCustomization & settings) {
for (auto & AnalogCustomization : settings.analogCustomizations) {
if (AnalogCustomization.type == AnalogType::COUNTER || AnalogCustomization.type >= AnalogType::DIGITAL_OUT) {
Command::erase_command(EMSdevice::DeviceType::ANALOGSENSOR, AnalogCustomization.name.c_str());
}
if (name.empty()) {
char n[20];
snprintf(n, sizeof(n), "%s_%02d", FL_(AnalogTypeName)[type], gpio);
name = n;
}
if (AnalogCustomization.gpio == gpio) {
found_sensor = true; // found the record
// see if it's marked for deletion
if (deleted) {
EMSESP::nvs_.remove(AnalogCustomization.name.c_str());
LOG_DEBUG("Removing analog sensor GPIO %02d", gpio);
settings.analogCustomizations.remove(AnalogCustomization);
} else {
// update existing record
if (name != AnalogCustomization.name) {
EMSESP::nvs_.remove(AnalogCustomization.name.c_str());
}
AnalogCustomization.name = name;
AnalogCustomization.offset = offset;
AnalogCustomization.factor = factor;
AnalogCustomization.uom = uom;
AnalogCustomization.type = type;
LOG_DEBUG("Customizing existing analog GPIO %02d", gpio);
}
return StateUpdateResult::CHANGED; // persist the change
}
}
return StateUpdateResult::UNCHANGED;
});
// if the sensor exists and we're using HA, delete the old HA record
if (found_sensor && Mqtt::ha_enabled()) {
remove_ha_topic(type, gpio); // the GPIO
}
// we didn't find it, it's new, so create and store it in the customization list
if (!found_sensor) {
EMSESP::webCustomizationService.update([&](WebCustomization & settings) {
auto newSensor = AnalogCustomization();
newSensor.gpio = gpio;
newSensor.name = name;
newSensor.offset = offset;
newSensor.factor = factor;
newSensor.uom = uom;
newSensor.type = type;
settings.analogCustomizations.push_back(newSensor);
LOG_DEBUG("Adding new customization for analog sensor GPIO %02d", gpio);
return StateUpdateResult::CHANGED; // persist the change
});
}
// reloads the sensors in the customizations file into the sensors list
reload();
return true;
}
// check to see if values have been updated
bool AnalogSensor::updated_values() {
if (changed_) {
changed_ = false;
return true;
}
return false;
}
// publish a single sensor to MQTT
void AnalogSensor::publish_sensor(const Sensor & sensor) const {
if (Mqtt::publish_single()) {
char topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
if (Mqtt::publish_single2cmd()) {
snprintf(topic, sizeof(topic), "%s/%s", F_(analogsensor), sensor.name().c_str());
} else {
snprintf(topic, sizeof(topic), "%s%s/%s", F_(analogsensor), "_data", sensor.name().c_str());
}
char payload[10];
Mqtt::queue_publish(topic, Helpers::render_value(payload, sensor.value(), 2)); // always publish as doubles
}
char cmd[COMMAND_MAX_LENGTH];
snprintf(cmd, sizeof(cmd), "%s/%s", F_(analogsensor), sensor.name().c_str());
EMSESP::webSchedulerService.onChange(cmd);
}
// send empty config topic to remove the entry from HA
void AnalogSensor::remove_ha_topic(const int8_t type, const uint8_t gpio) const {
if (!Mqtt::ha_enabled()) {
return;
}
LOG_DEBUG("Removing HA config for analog sensor GPIO %02d", gpio);
char topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
#if CONFIG_IDF_TARGET_ESP32
if (type == AnalogType::DIGITAL_OUT && gpio != 25 && gpio != 26) {
#else
if (type == AnalogType::DIGITAL_OUT) {
#endif
snprintf(topic, sizeof(topic), "switch/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), gpio);
} else if (type == AnalogType::DIGITAL_OUT) { // DAC
snprintf(topic, sizeof(topic), "number/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), gpio);
} else if (type >= AnalogType::PWM_0) {
snprintf(topic, sizeof(topic), "number/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), gpio);
} else if (type == AnalogType::DIGITAL_IN) {
snprintf(topic, sizeof(topic), "binary_sensor/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), gpio);
} else {
snprintf(topic, sizeof(topic), "sensor/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), gpio);
}
Mqtt::queue_remove_topic(topic);
}
// send all sensor values as a JSON package to MQTT
void AnalogSensor::publish_values(const bool force) {
uint8_t num_sensors = sensors_.size();
if (num_sensors == 0) {
return;
}
if (force && Mqtt::publish_single()) {
for (const auto & sensor : sensors_) {
publish_sensor(sensor);
}
}
JsonDocument doc;
for (auto & sensor : sensors_) {
if (sensor.type() != AnalogType::NOTUSED) {
if (Mqtt::is_nested()) {
char s[10];
JsonObject dataSensor = doc[Helpers::smallitoa(s, sensor.gpio())].to<JsonObject>();
dataSensor["name"] = sensor.name();
switch (sensor.type()) {
case AnalogType::COUNTER:
case AnalogType::TIMER:
case AnalogType::RATE:
case AnalogType::ADC:
case AnalogType::PWM_0:
case AnalogType::PWM_1:
case AnalogType::PWM_2:
dataSensor["value"] = serialized(Helpers::render_value(s, sensor.value(), 2)); // double
break;
case AnalogType::DIGITAL_IN:
case AnalogType::DIGITAL_OUT:
if (EMSESP::system_.bool_format() == BOOL_FORMAT_TRUEFALSE) {
dataSensor["value"] = sensor.value() != 0;
} else if (EMSESP::system_.bool_format() == BOOL_FORMAT_10) {
dataSensor["value"] = sensor.value() != 0 ? 1 : 0;
} else {
char result[12];
dataSensor["value"] = Helpers::render_boolean(result, sensor.value() != 0);
}
break;
default:
break;
}
} else if (sensor.type() == AnalogType::DIGITAL_IN || sensor.type() == AnalogType::DIGITAL_OUT) {
if (EMSESP::system_.bool_format() == BOOL_FORMAT_TRUEFALSE) {
doc[sensor.name()] = sensor.value() != 0;
} else if (EMSESP::system_.bool_format() == BOOL_FORMAT_10) {
doc[sensor.name()] = sensor.value() != 0 ? 1 : 0;
} else {
char result[12];
doc[sensor.name()] = Helpers::render_boolean(result, sensor.value() != 0);
}
} else {
char s[10];
doc[sensor.name()] = serialized(Helpers::render_value(s, sensor.value(), 2));
}
// create HA config if hasn't already been done
if (Mqtt::ha_enabled() && (!sensor.ha_registered || force)) {
LOG_DEBUG("Recreating HA config for analog sensor GPIO %02d", sensor.gpio());
JsonDocument config;
char stat_t[50];
snprintf(stat_t, sizeof(stat_t), "%s/%s_data", Mqtt::base().c_str(), F_(analogsensor)); // use base path
config["stat_t"] = stat_t;
char val_obj[50];
char val_cond[95];
if (Mqtt::is_nested()) {
snprintf(val_obj, sizeof(val_obj), "value_json['%02d'].value", sensor.gpio());
snprintf(val_cond, sizeof(val_cond), "value_json['%02d'] is defined and %s is defined", sensor.gpio(), val_obj);
} else {
snprintf(val_obj, sizeof(val_obj), "value_json['%s']", sensor.name().c_str());
snprintf(val_cond, sizeof(val_cond), "%s is defined", val_obj);
}
char sample_val[12] = "0";
if (sensor.type() == AnalogType::DIGITAL_IN || sensor.type() == AnalogType::DIGITAL_OUT) {
Helpers::render_boolean(sample_val, false);
}
config["val_tpl"] = (std::string) "{{" + val_obj + " if " + val_cond + " else " + sample_val + "}}";
char uniq_s[70];
if (Mqtt::entity_format() == Mqtt::entityFormat::MULTI_SHORT) {
snprintf(uniq_s, sizeof(uniq_s), "%s_%s_%02d", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
} else {
snprintf(uniq_s, sizeof(uniq_s), "%s_%02d", F_(analogsensor), sensor.gpio());
}
config["obj_id"] = uniq_s;
config["uniq_id"] = uniq_s; // same as object_id
char name[50];
snprintf(name, sizeof(name), "%s", sensor.name().c_str());
config["name"] = name;
if (sensor.uom() != DeviceValueUOM::NONE) {
config["unit_of_meas"] = EMSdevice::uom_to_string(sensor.uom());
}
char topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
// Set commands for some analog types
char command_topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
#if CONFIG_IDF_TARGET_ESP32
if (sensor.type() == AnalogType::DIGITAL_OUT && sensor.gpio() != 25 && sensor.gpio() != 26) {
#else
if (sensor.type() == AnalogType::DIGITAL_OUT) {
#endif
snprintf(topic, sizeof(topic), "switch/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
snprintf(command_topic, sizeof(command_topic), "%s/%s/%s", Mqtt::base().c_str(), F_(analogsensor), sensor.name().c_str());
config["cmd_t"] = command_topic;
Mqtt::add_ha_bool(config);
} else if (sensor.type() == AnalogType::DIGITAL_OUT) { // DAC
snprintf(topic, sizeof(topic), "number/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
snprintf(command_topic, sizeof(command_topic), "%s/%s/%s", Mqtt::base().c_str(), F_(analogsensor), sensor.name().c_str());
config["cmd_t"] = command_topic;
config["min"] = 0;
config["max"] = 255;
config["mode"] = "box"; // auto, slider or box
config["step"] = 1;
} else if (sensor.type() >= AnalogType::PWM_0 && sensor.type() <= AnalogType::PWM_2) {
snprintf(topic, sizeof(topic), "number/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
snprintf(command_topic, sizeof(command_topic), "%s/%s/%s", Mqtt::base().c_str(), F_(analogsensor), sensor.name().c_str());
config["cmd_t"] = command_topic;
config["min"] = 0;
config["max"] = 100;
config["mode"] = "box"; // auto, slider or box
config["step"] = 0.1;
} else if (sensor.type() == AnalogType::COUNTER) {
snprintf(topic, sizeof(topic), "sensor/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
snprintf(command_topic, sizeof(command_topic), "%s/%s/%s", Mqtt::base().c_str(), F_(analogsensor), sensor.name().c_str());
config["cmd_t"] = command_topic;
config["stat_cla"] = "total_increasing";
// config["mode"] = "box"; // auto, slider or box
// config["step"] = sensor.factor();
} else if (sensor.type() == AnalogType::DIGITAL_IN) {
snprintf(topic, sizeof(topic), "binary_sensor/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
Mqtt::add_ha_bool(config);
} else {
snprintf(topic, sizeof(topic), "sensor/%s/%s_%02d/config", Mqtt::basename().c_str(), F_(analogsensor), sensor.gpio());
config["stat_cla"] = "measurement";
}
// see if we need to create the [devs] discovery section, as this needs only to be done once for all sensors
bool is_ha_device_created = false;
for (auto const & sensor : sensors_) {
if (sensor.ha_registered) {
is_ha_device_created = true;
break;
}
}
Mqtt::add_ha_sections_to_doc("analog", stat_t, config, !is_ha_device_created, val_cond);
sensor.ha_registered = Mqtt::queue_ha(topic, config.as<JsonObject>());
}
}
}
char topic[Mqtt::MQTT_TOPIC_MAX_SIZE];
snprintf(topic, sizeof(topic), "%s_data", F_(analogsensor));
Mqtt::queue_publish(topic, doc.as<JsonObject>());
}
// called from emsesp.cpp for commands
// searches sensor by name
bool AnalogSensor::get_value_info(JsonObject output, const char * cmd, const int8_t id) {
if (sensors_.empty()) {
return true; // no sensors, return true
}
if (!strcmp(cmd, F_(info)) || !strcmp(cmd, F_(values))) {
for (const auto & sensor : sensors_) {
output[sensor.name()] = sensor.value();
}
return true;
}
if (!strcmp(cmd, F_(entities))) {
for (const auto & sensor : sensors_) {
get_value_json(output[sensor.name()].to<JsonObject>(), sensor);
}
return true;
}
// this is for a specific sensor
const char * attribute_s = Command::get_attribute(cmd);
for (const auto & sensor : sensors_) {
// match custom name or sensor GPIO
if (cmd == Helpers::toLower(sensor.name()) || Helpers::atoint(cmd) == sensor.gpio()) {
get_value_json(output, sensor);
return Command::set_attribute(output, cmd, attribute_s);
}
}
return false; // not found
}
void AnalogSensor::get_value_json(JsonObject output, const Sensor & sensor) {
output["name"] = sensor.name();
output["fullname"] = sensor.name();
output["gpio"] = sensor.gpio();
output["type"] = F_(number);
output["analog"] = FL_(list_sensortype)[sensor.type()];
output["value"] = sensor.value();
output["readable"] = true;
output["writeable"] = sensor.type() == AnalogType::COUNTER || (sensor.type() >= AnalogType::DIGITAL_OUT && sensor.type() <= AnalogType::PWM_2);
output["visible"] = true;
if (sensor.type() == AnalogType::COUNTER) {
output["min"] = 0;
output["max"] = 4000000;
output["start_value"] = sensor.offset();
output["factor"] = sensor.factor();
output["uom"] = EMSdevice::uom_to_string(sensor.uom());
} else if (sensor.type() == AnalogType::ADC) {
output["offset"] = sensor.offset();
output["factor"] = sensor.factor();
output["uom"] = EMSdevice::uom_to_string(sensor.uom());
} else if (sensor.type() == AnalogType::TIMER || sensor.type() == AnalogType::RATE) {
output["factor"] = sensor.factor();
} else if (sensor.type() >= AnalogType::PWM_0 && sensor.type() <= AnalogType::PWM_2) {
output["frequency"] = sensor.factor();
output["min"] = 0;
output["max"] = 100;
output["uom"] = EMSdevice::uom_to_string(sensor.uom());
} else if (sensor.type() == AnalogType::DIGITAL_OUT) {
output["min"] = 0;
output["max"] = sensor.gpio() == 25 || sensor.gpio() == 26 ? 255 : 1;
char state[][2] = {"?", "0", "1"};
output["start"] = state[sensor.uom()];
}
}
// this creates the sensor, initializing everything
AnalogSensor::Sensor::Sensor(const uint8_t gpio, const std::string & name, const double offset, const double factor, const uint8_t uom, const int8_t type)
: gpio_(gpio)
, name_(name)
, offset_(offset)
, factor_(factor)
, uom_(uom)
, type_(type) {
value_ = 0; // init value to 0 always
}
// set the dig_out/counter/DAC/PWM value, id is gpio-no
bool AnalogSensor::command_setvalue(const char * value, const int8_t gpio) {
float val;
if (!Helpers::value2float(value, val)) {
bool b;
if (!Helpers::value2bool(value, b)) {
return false;
}
val = b ? 1 : 0;
}
for (auto & sensor : sensors_) {
if (sensor.gpio() == gpio) {
double oldoffset = sensor.offset();
if (sensor.type() == AnalogType::COUNTER) {
if (val < 0 || value[0] == '+') { // sign corrects values
sensor.set_offset(sensor.value() + val);
sensor.set_value(sensor.value() + val);
} else { // positive values are set
sensor.set_offset(val);
sensor.set_value(val);
}
if (oldoffset != sensor.offset() && sensor.offset() != EMSESP::nvs_.getDouble(sensor.name().c_str())) {
EMSESP::nvs_.putDouble(sensor.name().c_str(), sensor.value());
}
} else if (sensor.type() == AnalogType::ADC) {
sensor.set_offset(val);
} else if (sensor.type() == AnalogType::DIGITAL_OUT) {
uint8_t v = val;
#if CONFIG_IDF_TARGET_ESP32
if ((sensor.gpio() == 25 || sensor.gpio() == 26) && v <= 255) {
sensor.set_offset(v);
sensor.set_value(v);
pinMode(sensor.gpio(), OUTPUT);
dacWrite(sensor.gpio(), sensor.offset());
} else
#elif CONFIG_IDF_TARGET_ESP32S2
if ((sensor.gpio() == 23 || sensor.gpio() == 24) && v <= 255) {
sensor.set_offset(v);
sensor.set_value(v);
pinMode(sensor.gpio(), OUTPUT);
dacWrite(sensor.gpio(), sensor.offset());
} else
#endif
if (v == 0 || v == 1) {
sensor.set_offset(v);
sensor.set_value(v);
pinMode(sensor.gpio(), OUTPUT);
digitalWrite(sensor.gpio(), sensor.offset() * sensor.factor() > 0 ? 1 : 0);
if (sensor.uom() == 0 && EMSESP::nvs_.getChar(sensor.name().c_str()) != (int8_t)sensor.offset()) {
EMSESP::nvs_.putChar(sensor.name().c_str(), (int8_t)sensor.offset());
}
}
} else if (sensor.type() >= AnalogType::PWM_0 && sensor.type() <= AnalogType::PWM_2) {
if (val > 100) {
val = 100;
} else if (val < 0) {
val = 0;
}
sensor.set_offset(val);
sensor.set_value(val);
#if ESP_IDF_VERSION_MAJOR >= 5
ledcWrite(sensor.gpio(), (uint32_t)(sensor.offset() * 8191 / 100));
#else
uint8_t channel = sensor.type() - AnalogType::PWM_0;
ledcWrite(channel, (uint32_t)(val * 8191 / 100));
#endif
} else {
return false;
}
if (oldoffset != sensor.offset()) {
publish_sensor(sensor);
changed_ = true;
}
return true;
}
}
return false;
}
} // namespace emsesp