-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathIndex.h
321 lines (282 loc) · 11 KB
/
Index.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_H
#define FAISS_INDEX_H
#include <faiss/MetricType.h>
#include <cstdio>
#include <sstream>
#include <string>
#include <typeinfo>
#define FAISS_VERSION_MAJOR 1
#define FAISS_VERSION_MINOR 9
#define FAISS_VERSION_PATCH 0
// Macro to combine the version components into a single string
#ifndef FAISS_STRINGIFY
#define FAISS_STRINGIFY(ARG) #ARG
#endif
#ifndef FAISS_TOSTRING
#define FAISS_TOSTRING(ARG) FAISS_STRINGIFY(ARG)
#endif
#define VERSION_STRING \
FAISS_TOSTRING(FAISS_VERSION_MAJOR) \
"." FAISS_TOSTRING(FAISS_VERSION_MINOR) "." FAISS_TOSTRING( \
FAISS_VERSION_PATCH)
/**
* @namespace faiss
*
* Throughout the library, vectors are provided as float * pointers.
* Most algorithms can be optimized when several vectors are processed
* (added/searched) together in a batch. In this case, they are passed
* in as a matrix. When n vectors of size d are provided as float * x,
* component j of vector i is
*
* x[ i * d + j ]
*
* where 0 <= i < n and 0 <= j < d. In other words, matrices are
* always compact. When specifying the size of the matrix, we call it
* an n*d matrix, which implies a row-major storage.
*/
namespace faiss {
/// Forward declarations see impl/AuxIndexStructures.h, impl/IDSelector.h
/// and impl/DistanceComputer.h
struct IDSelector;
struct RangeSearchResult;
struct DistanceComputer;
/** Parent class for the optional search paramenters.
*
* Sub-classes with additional search parameters should inherit this class.
* Ownership of the object fields is always to the caller.
*/
struct SearchParameters {
/// if non-null, only these IDs will be considered during search.
IDSelector* sel = nullptr;
/// make sure we can dynamic_cast this
virtual ~SearchParameters() {}
};
/** Abstract structure for an index, supports adding vectors and searching
* them.
*
* All vectors provided at add or search time are 32-bit float arrays,
* although the internal representation may vary.
*/
struct Index {
using component_t = float;
using distance_t = float;
int d; ///< vector dimension
idx_t ntotal; ///< total nb of indexed vectors
bool verbose; ///< verbosity level
/// set if the Index does not require training, or if training is
/// done already
bool is_trained;
/// type of metric this index uses for search
MetricType metric_type;
float metric_arg; ///< argument of the metric type
explicit Index(idx_t d = 0, MetricType metric = METRIC_L2)
: d(d),
ntotal(0),
verbose(false),
is_trained(true),
metric_type(metric),
metric_arg(0) {}
virtual ~Index();
/** Perform training on a representative set of vectors
*
* @param n nb of training vectors
* @param x training vecors, size n * d
*/
virtual void train(idx_t n, const float* x);
/** Add n vectors of dimension d to the index.
*
* Vectors are implicitly assigned labels ntotal .. ntotal + n - 1
* This function slices the input vectors in chunks smaller than
* blocksize_add and calls add_core.
* @param n number of vectors
* @param x input matrix, size n * d
*/
virtual void add(idx_t n, const float* x) = 0;
/** Same as add, but stores xids instead of sequential ids.
*
* The default implementation fails with an assertion, as it is
* not supported by all indexes.
*
* @param n number of vectors
* @param x input vectors, size n * d
* @param xids if non-null, ids to store for the vectors (size n)
*/
virtual void add_with_ids(idx_t n, const float* x, const idx_t* xids);
/** query n vectors of dimension d to the index.
*
* return at most k vectors. If there are not enough results for a
* query, the result array is padded with -1s.
*
* @param n number of vectors
* @param x input vectors to search, size n * d
* @param k number of extracted vectors
* @param distances output pairwise distances, size n*k
* @param labels output labels of the NNs, size n*k
*/
virtual void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
const SearchParameters* params = nullptr) const = 0;
/** query n vectors of dimension d to the index.
*
* return all vectors with distance < radius. Note that many
* indexes do not implement the range_search (only the k-NN search
* is mandatory).
*
* @param n number of vectors
* @param x input vectors to search, size n * d
* @param radius search radius
* @param result result table
*/
virtual void range_search(
idx_t n,
const float* x,
float radius,
RangeSearchResult* result,
const SearchParameters* params = nullptr) const;
/** return the indexes of the k vectors closest to the query x.
*
* This function is identical as search but only return labels of
* neighbors.
* @param n number of vectors
* @param x input vectors to search, size n * d
* @param labels output labels of the NNs, size n*k
* @param k number of nearest neighbours
*/
virtual void assign(idx_t n, const float* x, idx_t* labels, idx_t k = 1)
const;
/// removes all elements from the database.
virtual void reset() = 0;
/** removes IDs from the index. Not supported by all
* indexes. Returns the number of elements removed.
*/
virtual size_t remove_ids(const IDSelector& sel);
/** Reconstruct a stored vector (or an approximation if lossy coding)
*
* this function may not be defined for some indexes
* @param key id of the vector to reconstruct
* @param recons reconstucted vector (size d)
*/
virtual void reconstruct(idx_t key, float* recons) const;
/** Reconstruct several stored vectors (or an approximation if lossy
* coding)
*
* this function may not be defined for some indexes
* @param n number of vectors to reconstruct
* @param keys ids of the vectors to reconstruct (size n)
* @param recons reconstucted vector (size n * d)
*/
virtual void reconstruct_batch(idx_t n, const idx_t* keys, float* recons)
const;
/** Reconstruct vectors i0 to i0 + ni - 1
*
* this function may not be defined for some indexes
* @param i0 index of the first vector in the sequence
* @param ni number of vectors in the sequence
* @param recons reconstucted vector (size ni * d)
*/
virtual void reconstruct_n(idx_t i0, idx_t ni, float* recons) const;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* If there are not enough results for a query, the resulting arrays
* is padded with -1s.
*
* @param n number of vectors
* @param x input vectors to search, size n * d
* @param k number of extracted vectors
* @param distances output pairwise distances, size n*k
* @param labels output labels of the NNs, size n*k
* @param recons reconstructed vectors size (n, k, d)
**/
virtual void search_and_reconstruct(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
float* recons,
const SearchParameters* params = nullptr) const;
/** Computes a residual vector after indexing encoding.
*
* The residual vector is the difference between a vector and the
* reconstruction that can be decoded from its representation in
* the index. The residual can be used for multiple-stage indexing
* methods, like IndexIVF's methods.
*
* @param x input vector, size d
* @param residual output residual vector, size d
* @param key encoded index, as returned by search and assign
*/
virtual void compute_residual(const float* x, float* residual, idx_t key)
const;
/** Computes a residual vector after indexing encoding (batch form).
* Equivalent to calling compute_residual for each vector.
*
* The residual vector is the difference between a vector and the
* reconstruction that can be decoded from its representation in
* the index. The residual can be used for multiple-stage indexing
* methods, like IndexIVF's methods.
*
* @param n number of vectors
* @param xs input vectors, size (n x d)
* @param residuals output residual vectors, size (n x d)
* @param keys encoded index, as returned by search and assign
*/
virtual void compute_residual_n(
idx_t n,
const float* xs,
float* residuals,
const idx_t* keys) const;
/** Get a DistanceComputer (defined in AuxIndexStructures) object
* for this kind of index.
*
* DistanceComputer is implemented for indexes that support random
* access of their vectors.
*/
virtual DistanceComputer* get_distance_computer() const;
/* The standalone codec interface */
/** size of the produced codes in bytes */
virtual size_t sa_code_size() const;
/** encode a set of vectors
*
* @param n number of vectors
* @param x input vectors, size n * d
* @param bytes output encoded vectors, size n * sa_code_size()
*/
virtual void sa_encode(idx_t n, const float* x, uint8_t* bytes) const;
/** decode a set of vectors
*
* @param n number of vectors
* @param bytes input encoded vectors, size n * sa_code_size()
* @param x output vectors, size n * d
*/
virtual void sa_decode(idx_t n, const uint8_t* bytes, float* x) const;
/** moves the entries from another dataset to self.
* On output, other is empty.
* add_id is added to all moved ids
* (for sequential ids, this would be this->ntotal) */
virtual void merge_from(Index& otherIndex, idx_t add_id = 0);
/** check that the two indexes are compatible (ie, they are
* trained in the same way and have the same
* parameters). Otherwise throw. */
virtual void check_compatible_for_merge(const Index& otherIndex) const;
/** Add vectors that are computed with the standalone codec
*
* @param codes codes to add size n * sa_code_size()
* @param xids corresponding ids, size n
*/
virtual void add_sa_codes(idx_t n, const uint8_t* codes, const idx_t* xids);
};
} // namespace faiss
#endif