-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathtest_index.py
823 lines (614 loc) · 23.3 KB
/
test_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""this is a basic test script for simple indices work"""
from __future__ import absolute_import, division, print_function
# no unicode_literals because it messes up in py2
import numpy as np
import unittest
import faiss
import tempfile
import os
import re
import warnings
from common_faiss_tests import get_dataset, get_dataset_2
from faiss.contrib.evaluation import check_ref_knn_with_draws
class TestModuleInterface(unittest.TestCase):
def test_version_attribute(self):
assert hasattr(faiss, '__version__')
assert re.match('^\\d+\\.\\d+\\.\\d+$', faiss.__version__)
class TestIndexFlat(unittest.TestCase):
def do_test(self, nq, metric_type=faiss.METRIC_L2, k=10):
d = 32
nb = 1000
nt = 0
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlat(d, metric_type)
### k-NN search
index.add(xb)
D1, I1 = index.search(xq, k)
if metric_type == faiss.METRIC_L2:
all_dis = ((xq.reshape(nq, 1, d) - xb.reshape(1, nb, d)) ** 2).sum(2)
Iref = all_dis.argsort(axis=1)[:, :k]
else:
all_dis = np.dot(xq, xb.T)
Iref = all_dis.argsort(axis=1)[:, ::-1][:, :k]
Dref = all_dis[np.arange(nq)[:, None], Iref]
# not too many elements are off.
self.assertLessEqual((Iref != I1).sum(), Iref.size * 0.0002)
# np.testing.assert_equal(Iref, I1)
np.testing.assert_almost_equal(Dref, D1, decimal=5)
### Range search
radius = float(np.median(Dref[:, -1]))
lims, D2, I2 = index.range_search(xq, radius)
for i in range(nq):
l0, l1 = lims[i:i + 2]
_, Il = D2[l0:l1], I2[l0:l1]
if metric_type == faiss.METRIC_L2:
Ilref, = np.where(all_dis[i] < radius)
else:
Ilref, = np.where(all_dis[i] > radius)
Il.sort()
Ilref.sort()
np.testing.assert_equal(Il, Ilref)
np.testing.assert_almost_equal(
all_dis[i, Ilref], D2[l0:l1],
decimal=5
)
def set_blas_blocks(self, small):
if small:
faiss.cvar.distance_compute_blas_query_bs = 16
faiss.cvar.distance_compute_blas_database_bs = 12
else:
faiss.cvar.distance_compute_blas_query_bs = 4096
faiss.cvar.distance_compute_blas_database_bs = 1024
def test_with_blas(self):
self.set_blas_blocks(small=True)
self.do_test(200)
self.set_blas_blocks(small=False)
def test_noblas(self):
self.do_test(10)
def test_with_blas_ip(self):
self.set_blas_blocks(small=True)
self.do_test(200, faiss.METRIC_INNER_PRODUCT)
self.set_blas_blocks(small=False)
def test_noblas_ip(self):
self.do_test(10, faiss.METRIC_INNER_PRODUCT)
def test_noblas_reservoir(self):
self.do_test(10, k=150)
def test_with_blas_reservoir(self):
self.do_test(200, k=150)
def test_noblas_reservoir_ip(self):
self.do_test(10, faiss.METRIC_INNER_PRODUCT, k=150)
def test_with_blas_reservoir_ip(self):
self.do_test(200, faiss.METRIC_INNER_PRODUCT, k=150)
class TestIndexFlatL2(unittest.TestCase):
def test_indexflat_l2_sync_norms_1(self):
d = 32
nb = 10000
nt = 0
nq = 16
k = 10
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
# instantiate IndexHNSWFlat
index = faiss.IndexHNSWFlat(d, 32)
index.hnsw.efConstruction = 40
index.add(xb)
D1, I1 = index.search(xq, k)
index_l2 = faiss.downcast_index(index.storage)
index_l2.sync_l2norms()
D2, I2 = index.search(xq, k)
index_l2.clear_l2norms()
D3, I3 = index.search(xq, k)
# not too many elements are off.
self.assertLessEqual((I2 != I1).sum(), 1)
# np.testing.assert_equal(Iref, I1)
np.testing.assert_almost_equal(D2, D1, decimal=5)
# not too many elements are off.
self.assertLessEqual((I3 != I1).sum(), 0)
# np.testing.assert_equal(Iref, I1)
np.testing.assert_equal(D3, D1)
class EvalIVFPQAccuracy(unittest.TestCase):
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
coarse_quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(coarse_quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.train(xt)
index.add(xb)
index.nprobe = 4
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
nq = xq.shape[0]
self.assertGreater(n_ok, nq * 0.66)
# check that and Index2Layer gives the same reconstruction
# this is a bit fragile: it assumes 2 runs of training give
# the exact same result.
index2 = faiss.Index2Layer(coarse_quantizer, 32, 8)
if True:
index2.train(xt)
else:
index2.pq = index.pq
index2.is_trained = True
index2.add(xb)
ref_recons = index.reconstruct_n(0, nb)
new_recons = index2.reconstruct_n(0, nb)
self.assertTrue(np.all(ref_recons == new_recons))
def test_IMI(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
d = xt.shape[1]
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
nbits = 5
coarse_quantizer = faiss.MultiIndexQuantizer(d, 2, nbits)
index = faiss.IndexIVFPQ(coarse_quantizer, d, (1 << nbits) ** 2, 8, 8)
index.quantizer_trains_alone = 1
index.train(xt)
index.add(xb)
index.nprobe = 100
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# Should return 166 on mac, and 170 on linux.
self.assertGreater(n_ok, 165)
############# replace with explicit assignment indexes
nbits = 5
pq = coarse_quantizer.pq
centroids = faiss.vector_to_array(pq.centroids)
centroids = centroids.reshape(pq.M, pq.ksub, pq.dsub)
ai0 = faiss.IndexFlatL2(pq.dsub)
ai0.add(centroids[0])
ai1 = faiss.IndexFlatL2(pq.dsub)
ai1.add(centroids[1])
coarse_quantizer_2 = faiss.MultiIndexQuantizer2(d, nbits, ai0, ai1)
coarse_quantizer_2.pq = pq
coarse_quantizer_2.is_trained = True
index.quantizer = coarse_quantizer_2
index.reset()
index.add(xb)
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# should return the same result
self.assertGreater(n_ok, 165)
def test_IMI_2(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
d = xt.shape[1]
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
############# redo including training
nbits = 5
ai0 = faiss.IndexFlatL2(int(d / 2))
ai1 = faiss.IndexFlatL2(int(d / 2))
coarse_quantizer = faiss.MultiIndexQuantizer2(d, nbits, ai0, ai1)
index = faiss.IndexIVFPQ(coarse_quantizer, d, (1 << nbits) ** 2, 8, 8)
index.quantizer_trains_alone = 1
index.train(xt)
index.add(xb)
index.nprobe = 100
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# should return the same result
self.assertGreater(n_ok, 165)
class TestMultiIndexQuantizer(unittest.TestCase):
def test_search_k1(self):
# verify codepath for k = 1 and k > 1
d = 64
nb = 0
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
miq = faiss.MultiIndexQuantizer(d, 2, 6)
miq.train(xt)
D1, I1 = miq.search(xq, 1)
D5, I5 = miq.search(xq, 5)
self.assertEqual(np.abs(I1[:, :1] - I5[:, :1]).max(), 0)
self.assertEqual(np.abs(D1[:, :1] - D5[:, :1]).max(), 0)
class TestScalarQuantizer(unittest.TestCase):
def test_4variants_ivf(self):
d = 32
nt = 2500
nq = 400
nb = 5000
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
# common quantizer
quantizer = faiss.IndexFlatL2(d)
ncent = 64
index_gt = faiss.IndexFlatL2(d)
index_gt.add(xb)
D, I_ref = index_gt.search(xq, 10)
nok = {}
nprobe = 64 # Probe all centroids, only exercise residual quantizer.
index = faiss.IndexIVFFlat(quantizer, d, ncent,
faiss.METRIC_L2)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = nprobe
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok['flat'] = (I[:, 0] == I_ref[:, 0]).sum()
for qname in "QT_4bit QT_4bit_uniform QT_8bit QT_8bit_uniform QT_fp16 QT_bf16".split():
qtype = getattr(faiss.ScalarQuantizer, qname)
index = faiss.IndexIVFScalarQuantizer(quantizer, d, ncent,
qtype, faiss.METRIC_L2)
index.nprobe = nprobe
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok[qname] = (I[:, 0] == I_ref[:, 0]).sum()
self.assertGreaterEqual(nok['flat'], nq * 0.6)
# The tests below are a bit fragile, it happens that the
# ordering between uniform and non-uniform are reverted,
# probably because the dataset is small, which introduces
# jitter
self.assertGreaterEqual(nok['flat'], nok['QT_8bit'])
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_4bit'])
# flaky: self.assertGreaterEqual(nok['QT_8bit'], nok['QT_8bit_uniform'])
self.assertGreaterEqual(nok['QT_4bit'], nok['QT_4bit_uniform'])
self.assertGreaterEqual(nok['QT_fp16'], nok['QT_8bit'])
self.assertGreaterEqual(nok['QT_bf16'], nok['QT_8bit'])
def test_4variants(self):
d = 32
nt = 2500
nq = 400
nb = 5000
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index_gt = faiss.IndexFlatL2(d)
index_gt.add(xb)
D_ref, I_ref = index_gt.search(xq, 10)
nok = {}
for qname in "QT_4bit QT_4bit_uniform QT_8bit QT_8bit_uniform QT_fp16 QT_bf16".split():
qtype = getattr(faiss.ScalarQuantizer, qname)
index = faiss.IndexScalarQuantizer(d, qtype, faiss.METRIC_L2)
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok[qname] = (I[:, 0] == I_ref[:, 0]).sum()
self.assertGreaterEqual(nok['QT_8bit'], nq * 0.9)
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_4bit'])
# flaky: self.assertGreaterEqual(nok['QT_8bit'], nok['QT_8bit_uniform'])
self.assertGreaterEqual(nok['QT_4bit'], nok['QT_4bit_uniform'])
self.assertGreaterEqual(nok['QT_fp16'], nok['QT_8bit'])
self.assertGreaterEqual(nok['QT_bf16'], nq * 0.9)
class TestRangeSearch(unittest.TestCase):
def test_range_search(self):
d = 4
nt = 100
nq = 10
nb = 50
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
Dref, Iref = index.search(xq, 5)
thresh = 0.1 # *squared* distance
lims, D, I = index.range_search(xq, thresh)
for i in range(nq):
Iline = I[lims[i]:lims[i + 1]]
Dline = D[lims[i]:lims[i + 1]]
for j, dis in zip(Iref[i], Dref[i]):
if dis < thresh:
li, = np.where(Iline == j)
self.assertTrue(li.size == 1)
idx = li[0]
self.assertGreaterEqual(1e-4, abs(Dline[idx] - dis))
class TestSearchAndReconstruct(unittest.TestCase):
def run_search_and_reconstruct(self, index, xb, xq, k=10, eps=None):
n, d = xb.shape
assert xq.shape[1] == d
assert index.d == d
D_ref, I_ref = index.search(xq, k)
R_ref = index.reconstruct_n(0, n)
D, I, R = index.search_and_reconstruct(xq, k)
np.testing.assert_almost_equal(D, D_ref, decimal=5)
check_ref_knn_with_draws(D_ref, I_ref, D, I)
self.assertEqual(R.shape[:2], I.shape)
self.assertEqual(R.shape[2], d)
# (n, k, ..) -> (n * k, ..)
I_flat = I.reshape(-1)
R_flat = R.reshape(-1, d)
# Filter out -1s when not enough results
R_flat = R_flat[I_flat >= 0]
I_flat = I_flat[I_flat >= 0]
recons_ref_err = np.mean(np.linalg.norm(R_flat - R_ref[I_flat]))
self.assertLessEqual(recons_ref_err, 1e-6)
def norm1(x):
return np.sqrt((x ** 2).sum(axis=1))
recons_err = np.mean(norm1(R_flat - xb[I_flat]))
if eps is not None:
self.assertLessEqual(recons_err, eps)
return D, I, R
def test_IndexFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, 32, faiss.METRIC_L2)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_IndexIVFRQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFResidualQuantizer(quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_MultiIndex(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "IMI2x5,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_IndexTransform(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "L2norm,PCA8,IVF32,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq)
class TestDistancesPositive(unittest.TestCase):
def test_l2_pos(self):
"""
roundoff errors occur only with the L2 decomposition used
with BLAS, ie. in IndexFlatL2 and with
n > distance_compute_blas_threshold = 20
"""
d = 128
n = 100
rs = np.random.RandomState(1234)
x = rs.rand(n, d).astype('float32')
index = faiss.IndexFlatL2(d)
index.add(x)
D, I = index.search(x, 10)
assert np.all(D >= 0)
class TestShardReplicas(unittest.TestCase):
def test_shard_flag_propagation(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer1 = faiss.IndexFlatL2(d)
quantizer2 = faiss.IndexFlatL2(d)
index1 = faiss.IndexIVFFlat(quantizer1, d, nlist)
index2 = faiss.IndexIVFFlat(quantizer2, d, nlist)
index = faiss.IndexShards(d, True)
index.add_shard(index1)
index.add_shard(index2)
self.assertFalse(index.is_trained)
index.train(xb)
self.assertTrue(index.is_trained)
self.assertEqual(index.ntotal, 0)
index.add(xb)
self.assertEqual(index.ntotal, nb)
index.remove_shard(index2)
self.assertEqual(index.ntotal, nb / 2)
index.remove_shard(index1)
self.assertEqual(index.ntotal, 0)
def test_replica_flag_propagation(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer1 = faiss.IndexFlatL2(d)
quantizer2 = faiss.IndexFlatL2(d)
index1 = faiss.IndexIVFFlat(quantizer1, d, nlist)
index2 = faiss.IndexIVFFlat(quantizer2, d, nlist)
index = faiss.IndexReplicas(d, True)
index.add_replica(index1)
index.add_replica(index2)
self.assertFalse(index.is_trained)
index.train(xb)
self.assertTrue(index.is_trained)
self.assertEqual(index.ntotal, 0)
index.add(xb)
self.assertEqual(index.ntotal, nb)
index.remove_replica(index2)
self.assertEqual(index.ntotal, nb)
index.remove_replica(index1)
self.assertEqual(index.ntotal, 0)
class TestReconsException(unittest.TestCase):
def test_recons_exception(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer = faiss.IndexFlatL2(d) # the other index
index = faiss.IndexIVFFlat(quantizer, d, nlist)
index.train(xb)
index.add(xb)
index.make_direct_map()
index.reconstruct(9)
self.assertRaises(
RuntimeError,
index.reconstruct, 100001
)
def test_reconstuct_after_add(self):
index = faiss.index_factory(10, 'IVF5,SQfp16')
index.train(faiss.randn((100, 10), 123))
index.add(faiss.randn((100, 10), 345))
index.make_direct_map()
index.add(faiss.randn((100, 10), 678))
# should not raise an exception
index.reconstruct(5)
index.reconstruct(150)
class TestReconsHash(unittest.TestCase):
def do_test(self, index_key):
d = 32
index = faiss.index_factory(d, index_key)
index.train(faiss.randn((100, d), 123))
# reference reconstruction
index.add(faiss.randn((100, d), 345))
index.add(faiss.randn((100, d), 678))
ref_recons = index.reconstruct_n(0, 200)
# with lookup
index.reset()
rs = np.random.RandomState(123)
ids = rs.choice(10000, size=200, replace=False).astype(np.int64)
index.add_with_ids(faiss.randn((100, d), 345), ids[:100])
index.set_direct_map_type(faiss.DirectMap.Hashtable)
index.add_with_ids(faiss.randn((100, d), 678), ids[100:])
# compare
for i in range(0, 200, 13):
recons = index.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# test I/O
buf = faiss.serialize_index(index)
index2 = faiss.deserialize_index(buf)
# compare
for i in range(0, 200, 13):
recons = index2.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# remove
toremove = np.ascontiguousarray(ids[0:200:3])
sel = faiss.IDSelectorArray(50, faiss.swig_ptr(toremove[:50]))
# test both ways of removing elements
nremove = index2.remove_ids(sel)
nremove += index2.remove_ids(toremove[50:])
self.assertEqual(nremove, len(toremove))
for i in range(0, 200, 13):
if i % 3 == 0:
self.assertRaises(
RuntimeError,
index2.reconstruct, int(ids[i])
)
else:
recons = index2.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# index error should raise
self.assertRaises(
RuntimeError,
index.reconstruct, 20000
)
def test_IVFFlat(self):
self.do_test("IVF5,Flat")
def test_IVFSQ(self):
self.do_test("IVF5,SQfp16")
def test_IVFPQ(self):
self.do_test("IVF5,PQ4x4np")
class TestValidIndexParams(unittest.TestCase):
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
coarse_quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(coarse_quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.train(xt)
index.add(xb)
# invalid nprobe
index.nprobe = 0
k = 10
self.assertRaises(RuntimeError, index.search, xq, k)
# invalid k
index.nprobe = 4
k = -10
self.assertRaises(AssertionError, index.search, xq, k)
# valid params
index.nprobe = 4
k = 10
D, nns = index.search(xq, k)
self.assertEqual(D.shape[0], nq)
self.assertEqual(D.shape[1], k)
def test_IndexFlat(self):
d = 32
nb = 1000
nt = 0
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlat(d, faiss.METRIC_L2)
index.add(xb)
# invalid k
k = -5
self.assertRaises(AssertionError, index.search, xq, k)
# valid k
k = 5
D, I = index.search(xq, k)
self.assertEqual(D.shape[0], nq)
self.assertEqual(D.shape[1], k)
class TestLargeRangeSearch(unittest.TestCase):
def test_range_search(self):
# test for https://github.com/facebookresearch/faiss/issues/1889
d = 256
nq = 16
nb = 1000000
# faiss.cvar.distance_compute_blas_threshold = 10
faiss.omp_set_num_threads(1)
index = faiss.IndexFlatL2(d)
xb = np.zeros((nb, d), dtype="float32")
index.add(xb)
xq = np.zeros((nq, d), dtype="float32")
lims, D, I = index.range_search(xq, 1.0)
assert len(D) == len(xb) * len(xq)
class TestRandomIndex(unittest.TestCase):
def test_random(self):
""" just check if several runs of search retrieve the
same results """
index = faiss.IndexRandom(32, 1000000000)
(xt, xb, xq) = get_dataset_2(32, 0, 0, 10)
Dref, Iref = index.search(xq, 10)
self.assertTrue(np.all(Dref[:, 1:] >= Dref[:, :-1]))
Dnew, Inew = index.search(xq, 10)
np.testing.assert_array_equal(Dref, Dnew)
np.testing.assert_array_equal(Iref, Inew)