|
| 1 | +/************************************************************************* |
| 2 | + * Written in 2020-2022 by Elichai Turkel * |
| 3 | + * To the extent possible under law, the author(s) have dedicated all * |
| 4 | + * copyright and related and neighboring rights to the software in this * |
| 5 | + * file to the public domain worldwide. This software is distributed * |
| 6 | + * without any warranty. For the CC0 Public Domain Dedication, see * |
| 7 | + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * |
| 8 | + *************************************************************************/ |
| 9 | + |
| 10 | +#include <stdio.h> |
| 11 | +#include <assert.h> |
| 12 | +#include <string.h> |
| 13 | + |
| 14 | +#include <secp256k1.h> |
| 15 | + |
| 16 | +#include "random.h" |
| 17 | + |
| 18 | + |
| 19 | + |
| 20 | +int main(void) { |
| 21 | + /* Instead of signing the message directly, we must sign a 32-byte hash. |
| 22 | + * Here the message is "Hello, world!" and the hash function was SHA-256. |
| 23 | + * An actual implementation should just call SHA-256, but this example |
| 24 | + * hardcodes the output to avoid depending on an additional library. |
| 25 | + * See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */ |
| 26 | + unsigned char msg_hash[32] = { |
| 27 | + 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4, |
| 28 | + 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64, |
| 29 | + 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34, |
| 30 | + 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3, |
| 31 | + }; |
| 32 | + unsigned char seckey[32]; |
| 33 | + unsigned char randomize[32]; |
| 34 | + unsigned char compressed_pubkey[33]; |
| 35 | + unsigned char serialized_signature[64]; |
| 36 | + size_t len; |
| 37 | + int is_signature_valid; |
| 38 | + int return_val; |
| 39 | + secp256k1_pubkey pubkey; |
| 40 | + secp256k1_ecdsa_signature sig; |
| 41 | + /* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` needs |
| 42 | + * a context object initialized for signing and `secp256k1_ecdsa_verify` needs |
| 43 | + * a context initialized for verification, which is why we create a context |
| 44 | + * for both signing and verification with the SECP256K1_CONTEXT_SIGN and |
| 45 | + * SECP256K1_CONTEXT_VERIFY flags. */ |
| 46 | + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); |
| 47 | + if (!fill_random(randomize, sizeof(randomize))) { |
| 48 | + printf("Failed to generate randomness\n"); |
| 49 | + return 1; |
| 50 | + } |
| 51 | + /* Randomizing the context is recommended to protect against side-channel |
| 52 | + * leakage See `secp256k1_context_randomize` in secp256k1.h for more |
| 53 | + * information about it. This should never fail. */ |
| 54 | + return_val = secp256k1_context_randomize(ctx, randomize); |
| 55 | + assert(return_val); |
| 56 | + |
| 57 | + /*** Key Generation ***/ |
| 58 | + |
| 59 | + /* If the secret key is zero or out of range (bigger than secp256k1's |
| 60 | + * order), we try to sample a new key. Note that the probability of this |
| 61 | + * happening is negligible. */ |
| 62 | + while (1) { |
| 63 | + if (!fill_random(seckey, sizeof(seckey))) { |
| 64 | + printf("Failed to generate randomness\n"); |
| 65 | + return 1; |
| 66 | + } |
| 67 | + if (secp256k1_ec_seckey_verify(ctx, seckey)) { |
| 68 | + break; |
| 69 | + } |
| 70 | + } |
| 71 | + |
| 72 | + /* Public key creation using a valid context with a verified secret key should never fail */ |
| 73 | + return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey); |
| 74 | + assert(return_val); |
| 75 | + |
| 76 | + /* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */ |
| 77 | + len = sizeof(compressed_pubkey); |
| 78 | + return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED); |
| 79 | + assert(return_val); |
| 80 | + /* Should be the same size as the size of the output, because we passed a 33 byte array. */ |
| 81 | + assert(len == sizeof(compressed_pubkey)); |
| 82 | + |
| 83 | + /*** Signing ***/ |
| 84 | + |
| 85 | + /* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a |
| 86 | + * custom nonce function, passing `NULL` will use the RFC-6979 safe default. |
| 87 | + * Signing with a valid context, verified secret key |
| 88 | + * and the default nonce function should never fail. */ |
| 89 | + return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL); |
| 90 | + assert(return_val); |
| 91 | + |
| 92 | + /* Serialize the signature in a compact form. Should always return 1 |
| 93 | + * according to the documentation in secp256k1.h. */ |
| 94 | + return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig); |
| 95 | + assert(return_val); |
| 96 | + |
| 97 | + |
| 98 | + /*** Verification ***/ |
| 99 | + |
| 100 | + /* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */ |
| 101 | + if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) { |
| 102 | + printf("Failed parsing the signature\n"); |
| 103 | + return 1; |
| 104 | + } |
| 105 | + |
| 106 | + /* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */ |
| 107 | + if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) { |
| 108 | + printf("Failed parsing the public key\n"); |
| 109 | + return 1; |
| 110 | + } |
| 111 | + |
| 112 | + /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ |
| 113 | + is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey); |
| 114 | + |
| 115 | + printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); |
| 116 | + printf("Secret Key: "); |
| 117 | + print_hex(seckey, sizeof(seckey)); |
| 118 | + printf("Public Key: "); |
| 119 | + print_hex(compressed_pubkey, sizeof(compressed_pubkey)); |
| 120 | + printf("Signature: "); |
| 121 | + print_hex(serialized_signature, sizeof(serialized_signature)); |
| 122 | + |
| 123 | + |
| 124 | + /* This will clear everything from the context and free the memory */ |
| 125 | + secp256k1_context_destroy(ctx); |
| 126 | + |
| 127 | + /* It's best practice to try to clear secrets from memory after using them. |
| 128 | + * This is done because some bugs can allow an attacker to leak memory, for |
| 129 | + * example through "out of bounds" array access (see Heartbleed), Or the OS |
| 130 | + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. |
| 131 | + * |
| 132 | + * TODO: Prevent these writes from being optimized out, as any good compiler |
| 133 | + * will remove any writes that aren't used. */ |
| 134 | + memset(seckey, 0, sizeof(seckey)); |
| 135 | + |
| 136 | + return 0; |
| 137 | +} |
0 commit comments