-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
188 lines (151 loc) · 5.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from tqdm import tqdm
import utils
import os
import numpy as np
from torch.utils import data
from datasets import VOCSegmentation
from utils import ext_transforms as et
from metrics import StreamSegMetrics
import torch
import torch.nn as nn
from unet_org import UNetOrg
test_only=False
total_itrs=30000
val_interval=500
save_val_results = True
crop_size = 512
batch_size = 4
val_batch_size = 8
num_classes = 21
def get_dataset():
""" Dataset And Augmentation
"""
train_transform = et.ExtCompose([
et.ExtResize(size=crop_size),
# et.ExtRandomScale((0.5, 2.0)),
et.ExtRandomCrop(size=(crop_size, crop_size), pad_if_needed=False),
# et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
# et.ExtNormalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225]),
])
val_transform = et.ExtCompose([
et.ExtResize(size=crop_size),
et.ExtRandomCrop(size=(crop_size, crop_size), pad_if_needed=False),
#et.ExtCenterCrop(crop_size),
et.ExtToTensor(),
# et.ExtNormalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225]),
])
train_dst = VOCSegmentation(image_set='train', transform=train_transform)
val_dst = VOCSegmentation(image_set='val', transform=val_transform)
return train_dst, val_dst
def validate(model, loader, device, metrics, ret_samples_ids=None):
"""Do validation and return specified samples"""
metrics.reset()
ret_samples = []
if save_val_results:
if not os.path.exists('results'):
os.mkdir('results')
with torch.no_grad():
for i, (images, labels) in tqdm(enumerate(loader)):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
outputs = model(images)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
if ret_samples_ids is not None and i in ret_samples_ids: # get vis samples
ret_samples.append(
(images[0].detach().cpu().numpy(), targets[0], preds[0]))
score = metrics.get_results()
return score, ret_samples
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: %s" % device)
# Setup dataloader
val_batch_size = 1
train_dst, val_dst = get_dataset()
train_loader = data.DataLoader(
train_dst, batch_size=batch_size, shuffle=True, num_workers=2,
drop_last=True) # drop_last=True to ignore single-image batches.
val_loader = data.DataLoader(
val_dst, batch_size=val_batch_size, shuffle=True, num_workers=2)
print("Dataset: VOC, Train set: %d, Val set: %d" %
(len(train_dst), len(val_dst)))
model = UNetOrg(classes=num_classes)
# Set up metrics
metrics = StreamSegMetrics(num_classes)
# Set up optimizer
# optimizer = torch.optim.SGD(params=[
# {'params': model.parameters(), 'lr': 0.1 * opts.lr},
# {'params': model.parameters(), 'lr': opts.lr},
# ], lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001)
# torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10000, gamma=0.1)
# Set up criterion
criterion = nn.CrossEntropyLoss(ignore_index=255, reduction='mean')
def save_ckpt(path):
""" save current model
"""
torch.save({
"cur_itrs": cur_itrs,
"model_state": model.module.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
}, path)
print("Model saved as %s" % path)
utils.mkdir('checkpoints')
# Restore
best_score = 0.0
cur_itrs = 0
cur_epochs = 0
print("[!] Retrain")
model = nn.DataParallel(model)
model.to(device)
# ========== Train Loop ==========#
if test_only:
model.eval()
val_score, ret_samples = validate(
model=model, loader=val_loader, device=device, metrics=metrics)#, ret_samples_ids=vis_sample_id)
print(metrics.to_str(val_score))
return
interval_loss = 0
while True: # cur_itrs < opts.total_itrs:
# ===== Train =====
model.train()
cur_epochs += 1
for (images, labels) in train_loader:
cur_itrs += 1
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
np_loss = loss.detach().cpu().numpy()
interval_loss += np_loss
if (cur_itrs) % 10 == 0:
interval_loss = interval_loss / 10
print("Epoch %d, Itrs %d/%d, Loss=%f" %
(cur_epochs, cur_itrs, total_itrs, interval_loss))
interval_loss = 0.0
if (cur_itrs) % val_interval == 0:
save_ckpt('checkpoints/latest_%s_%s.pth' %
("UNet", 'VOC'))
print("validation...")
model.eval()
val_score, ret_samples = validate(
model=model, loader=val_loader, device=device, metrics=metrics)#,
#ret_samples_ids=vis_sample_id)
print(metrics.to_str(val_score))
model.train()
scheduler.step()
if cur_itrs >= total_itrs:
return
if __name__ == '__main__':
main()