-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefense_Yuanjun.tex
1579 lines (1407 loc) · 58 KB
/
defense_Yuanjun.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[16pt,presentation]{beamer}
%\mode<presentation>{\usetheme{default}}
%\setbeamersize{text margin left=0.5cm}
%\setbeamersize{text margin right=0.5cm}
\usepackage{color}
\usepackage{rotating}
%\usepackage{movie15}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{helvet}
\usepackage[T1]{fontenc}
\usepackage{units}
\usepackage{bm}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{algorithm}
\usepackage{algorithmicx}
\usepackage{rotating}
\usepackage{hyperref}
\usepackage{verbatim}
%\usepackage{multimedia}
\usepackage{tikz}
\usepackage{bbm}
\usepackage{smartdiagram}
\usepackage{animate}
\usesmartdiagramlibrary{additions}
\usetikzlibrary{fit,positioning}
\usepackage[backend=bibtex,style=authoryear]{biblatex}
\usepackage{pifont}% http://ctan.org/pkg/pifont
\newcommand{\cmark}{\ding{51}}%
\newcommand{\xmark}{\ding{55}}%
\addbibresource{refs.bib}
\input{texdefs.tex}
%TODO
% start of the presentation
% notation in calcium imaging
% video for calcium imaing?
%\usetheme{Warsaw}
\usetheme{metropolis}
\setbeamerfont{footline}{size=\fontsize{6}{10}\selectfont}
%%%% title etc.
\author[Yuanjun Gao]{Yuanjun Gao}
\institute{\small Department of Statistics\\ Columbia University}
\title[Department of Statistics, Columbia University]{\large Statistical Machine Learning Methods for High-dimensional Neural Population Data Analysis}
\date{}
\begin{document}
\defbeamertemplate{subsection in toc}{bullets}{%
\leavevmode
\parbox[t]{2em}{\hspace{1em}\textbullet\hfill}%
\parbox[t]{\dimexpr\textwidth-1em\relax}{\inserttocsubsection}\par}
\defbeamertemplate{section in toc}{sections numbered roman}{%
\leavevmode%
\MakeUppercase{\romannumeral\inserttocsectionnumber}.\ %
\inserttocsection\par}
\beamertemplatetransparentcovereddynamicmedium
\setbeamertemplate{section in toc}[sections numbered roman]
\setbeamertemplate{subsection in toc}[bullets]
\setbeamercolor{background canvas}{bg=white}
%%%%%%%%%%%%%%%%%%% Title page %%%%%%%%%%%%%%%%%
\begin{frame}\vspace*{1.5cm}
\maketitle
\begin{center}
\vspace{-1cm}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%% Overview %%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Overview}
%\begin{itemize}
%\item Brain, an \alert{amazing} organ!
%\end{itemize}
\begin{center}
\includegraphics[width = 0.45\textwidth]{./figs/overview/543px-Brain_human_sagittal_section.png}
\end{center}
%https://commons.wikimedia.org/wiki/File%3ABrain_human_sagittal_section.svg
\end{frame}
\begin{frame}
\frametitle{Overview}
\begin{center}
\begin{tabular}{ccc}
\begin{minipage}{0.5\textwidth}
\begin{tabular}[t]{c}
\visible<2->{\includegraphics[width=1\textwidth, height=0.1\textwidth,clip = true]{figs/ROI_cartoon/fig_cartoon_spike_1.pdf}}\\
\visible<2->{\includegraphics[width=1\textwidth,height=0.1\textwidth, clip = true]{figs/ROI_cartoon/fig_cartoon_spike_2.pdf}}\\
\visible<1->{\includegraphics[width=1\textwidth,height=0.1\textwidth,clip = true]{figs/ROI_cartoon/fig_cartoon_spike_3.pdf}}\\
\scriptsize{Time}
\end{tabular}
\end{minipage}
&
\visible<2->{\Large $\Leftarrow$}
&
\visible<2->{
\begin{minipage}{0.30\textwidth}
%\begin{center}
\includegraphics[width = 0.8\textwidth]{./figs/overview/monkey.jpg}
%\end{center}
\end{minipage}
}
\\
\visible<3->{
{\Large $\Downarrow$}&&\\
\begin{minipage}{0.5\textwidth}
\includegraphics[width = 1.0\textwidth]{./figs/overview/spike_train_data.png}
\end{minipage}}
&
\multicolumn{2}{l}{
\visible<4->{
\begin{minipage}{0.3\textwidth}
\begin{itemize}
\item Rich structure
\item Large data
\item \alert{Opportunities!}
\end{itemize}
\end{minipage}}}
%$\Rightarrow$
%&\\
%\includegraphics[width = 0.25\textwidth]{./figs/overview/Zebrafish_embryos.png}
\end{tabular}
%}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Overview}
%{\scripsize
\begin{minipage}[t][3.5cm]{0.8\textwidth}
\begin{center}
\smartdiagramset{
uniform color list=blue!30!white for 4 items,
back arrow disabled=false,
additions={
additional item offset=0.85cm,
additional item border color=red,
additional arrow color=red,
additional arrow tip=stealth,
additional arrow line width=1pt,
additional arrow style=]-latex,
}
}
\smartdiagramadd[flow diagram:horizontal]{%
{\scriptsize Data collection}, {\scriptsize Pre-processing}, {\scriptsize Modeling}, {\scriptsize Hypothesis testing}%
}{%
below of module2/Part II, below of module3/Part I, below of module4/Part III%
}
\smartdiagramconnect{{]-latex}}{additional-module1/module2}
\smartdiagramconnect{{]-latex}}{additional-module2/module3}
\smartdiagramconnect{{]-latex}}{additional-module3/module4}
\end{center}
%}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\AtBeginSection[]
{
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents[
currentsection, currentsubsection
]
\end{frame}
}
\AtBeginSubsection[]
{
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents[
currentsection, currentsubsection
]
\end{frame}
}
%%%%%%%%%%%%%%%%%%%%%%% latent variable model for neural population data %%%%%%%%
\section[]{Neural Population Data Analysis with Latent Variable Models}
\begin{frame}
\frametitle{State space models}
\begin{figure}
\centering
{\small
\begin{tikzpicture}
\tikzstyle{main}=[circle, minimum size = 11mm, thick, draw =black!80, node distance = 6mm]
\tikzstyle{connect}=[-latex, thick]
\tikzstyle{box}=[rectangle, draw=black!100]
\node[main, fill = white!100] (z1) [] { $\vz_{t-1}$};
\node[main] (z2) [right=of z1] {$\vz_{t}$ };
\node[main] (z3) [right=of z2] {$\vz_{t+1}$};
\node[main, fill = blue!20] (x1) [above=of z1] { $\vx_{t-1}$};
\node[main, fill = blue!20] (x2) [above=of z2] {$\vx_{t}$ };
\node[main, fill = blue!20] (x3) [above=of z3] {$\vx_{t+1}$};
\node (z0) [left=of z1] {$\cdots$};
\node (zT) [right=of z3] {$\cdots$};
\path (z1) edge [connect] (z2)
(z2) edge [connect] (z3)
(z1) edge [connect] (x1)
(z2) edge [connect] (x2)
(z3) edge [connect] (x3)
(z0) edge [connect] (z1)
(z3) edge [connect] (zT);
\end{tikzpicture}
}
\end{figure}
\begin{itemize}
\item $\vx_t \in \mathbb{N}^n$: spike counts; $\vz_t \in \mathbb{R}^m$: latent variables
%\item $p(\vx, \vz) = p(\vz_1) \prod_{t=1}^{T-1}p(\vz_{t+1} | \vz_t) \prod_{t=1}^T p(\vx_t | \vz_t)$
%\item Joint distribution
%\[\log p(\vx, \vz) = \underbrace{\log p(\vz_1)}_{\text{Initial distribution}} +
%\underbrace{\sum_{t=1}^{T-1}\log p(\vz_{t+1} | \vz_t)}_{\text{Transition model}} +
%\underbrace{\sum_{t=1}^T \log p(\vx_t | \vz_t)}_{\text{Observation model}}\]
\item Joint distribution
\[p(\vx, \vz) = \underbrace{p(\vz_1)}_{\text{Initial distribution}}
\underbrace{\prod_{t=1}^{T-1}p(\vz_{t+1} | \vz_t)}_{\text{Transition model}}
\underbrace{\prod_{t=1}^T p(\vx_t | \vz_t)}_{\text{Observation model}}\]
%\item Interpretation of latent variables: Unobserved neuron, intention; Dynamical view of motor data %(TODO: elaborate this line)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{State space models: multiple trials}
\begin{figure}
\centering
{\footnotesize
\begin{tikzpicture}
\tikzstyle{main}=[circle, minimum size = 11mm, text width = 8mm, align=center, thick, draw =black!80, node distance = 6mm]
\tikzstyle{connect}=[-latex, thick]
\tikzstyle{box}=[rectangle, draw=black!100]
\node[main, fill = white!100] (z1) [] { $\vz_{r(t-1)}$};
\node[main] (z2) [right=of z1] {$\vz_{rt}$ };
\node[main] (z3) [right=of z2] {$\vz_{r(t+1)}$};
\node[main, fill = blue!20] (x1) [above=of z1] { $\vx_{r(t-1)}$};
\node[main, fill = blue!20] (x2) [above=of z2] {$\vx_{rt}$ };
\node[main, fill = blue!20] (x3) [above=of z3] {$\vx_{r(t+1)}$};
\node (z0) [left=of z1] {$\cdots$};
\node (zT) [right=of z3] {$\cdots$};
\path (z1) edge [connect] (z2)
(z2) edge [connect] (z3)
(z1) edge [connect] (x1)
(z2) edge [connect] (x2)
(z3) edge [connect] (x3)
(z0) edge [connect] (z1)
(z3) edge [connect] (zT);
\end{tikzpicture}
}
\end{figure}
\begin{itemize}
\item $r=1,...,R$: trial number
\item $\vx_{rt} \in \mathbb{N}^n$: spike counts; $\vz_{rt} \in \mathbb{R}^m$: latent variables
%\item $p(\vx, \vz) = p(\vz_1) \prod_{t=1}^{T-1}p(\vz_{t+1} | \vz_t) \prod_{t=1}^T p(\vx_t | \vz_t)$
%\item Joint distribution
%\[\log p(\vx, \vz) = \underbrace{\log p(\vz_1)}_{\text{Initial distribution}} +
%\underbrace{\sum_{t=1}^{T-1}\log p(\vz_{t+1} | \vz_t)}_{\text{Transition model}} +
%\underbrace{\sum_{t=1}^T \log p(\vx_t | \vz_t)}_{\text{Observation model}}\]
\item Joint distribution
\[p(\vx, \vz) = \prod_{r=1}^R \left[ \underbrace{p(\vz_{r1})}_{\text{Initial distribution}}
\underbrace{\prod_{t=1}^{T-1}p(\vz_{r(t+1)} | \vz_{rt})}_{\text{Transition model}}
\underbrace{\prod_{t=1}^T p(\vx_{rt} | \vz_{rt})}_{\text{Observation model}} \right]\]
%\item Common input; Dynamical view of motor data (TODO: elaborate this line)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Common parameterization and our extensions}
\begin{itemize}
\item Common assumptions for latent dynamics: Gaussian linear dynamical system (LDS)
\[\begin{split}
\vz_{r1} &\sim \N(\mu_1, Q_1)\\
\vz_{r(t+1)} | \vz_{rt} &\sim \N(A \vz_{rt}, Q)
\end{split}\]
\item Common observation models:
\[\vx_{rt} | \vz_{rt} \sim \underbrace{\underbrace{\N(C \vz_{rt} + d, \Sigma)}_{\text{model mismatch}}
\text{ or }
\underbrace{\text{Poisson}\left(\exp(C \vz_{rt} + d)\right)}_{\text{equal dispersion}}}_\text{stringent assumptions}\]
\item Our extensions for observation model:
\begin{itemize}
\item Generalized count distribution (GCLDS) \parencite{Gao2015}
\item Flexible nonlinear observation (fLDS) \parencite{gao2016linear}
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%% GCLDS %%%%%%%%
\subsection[]{Generalized count linear dynamical system}
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
\item Doubly stochastic Poisson model implies \alert{overdispersion}
%\[ \vx \sim \text{Poisson}(f(\vz)) , \vz \sim p(\vz) \rightarrow \text{var}(\vx) \geq E(\vx)\]
\[\left. \begin{array}{ll} \vz &\sim p(\vz) \\ \vx | \vz &\sim \text{Poisson}(f(\vz)) \end{array} \right\} \Rightarrow
\begin{array}{ll} \text{var}(\vx | \vz) &= E(\vx | \vz) \\ \text{var}(\vx) &\geq E(\vx) \end{array}\]
%\item Need a more flexible distribution to separate \alert{firing rate variability} with \alert{noise variability}.
%\[\text{var}(\vx) = \underbrace{\text{var}\left(E(\vx | \vz)\right)}_\text{firing rate variability} + \underbrace{E\left(\text{var}(\vx | \vz)\right)}_\text{noise variability}\]
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Generalized count distribution family}
\begin{itemize}
\item Generalized count (GC) distribution family
\[\begin{split}
p_{\text{Poisson}}(x; \lambda) \propto& \frac{\exp\left\{\log{\lambda} \cdot x\right\}}{x!},~~~x \in \mathbb{N}\\
\Downarrow&\\
p_{\mathcal{GC}}(x; \theta, g(\cdot)) \propto& \frac{\exp(\theta \cdot x + g(x) )}{x!}, ~~~x \in \mathbb{N}
\end{split}\]
where $\theta \in \mathbb{R}$, $g(\cdot): \mathbb{N} \rightarrow \mathbb{R}$.
\item Parameterizes \alert{all} the count distributions \alert{redundantly}.
\item $\theta$ acts as ``rate'' parameter.
\item $g(\cdot)$ acts as ``shape'' parameter. %Convex/concave/linear $g(\cdot)$ implies overdispersed/underdispered/Poisson distribution.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Generalized count distribution family}
\begin{center}
\includegraphics[width = 0.60\textwidth]{./figs/gclds/fig_var_GPoiss.pdf}
\end{center}
\begin{itemize}
\item Probability mass function for GC distribution family
\[p_{\mathcal{GC}}(x; \theta, g(\cdot)) \propto \frac{\exp(\theta \cdot x + g(x) )}{x!}, ~~~x \in \mathbb{N}\]
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Model formulation}
\begin{itemize}
\item Linear dynamical systems with generalized count observation
\[\begin{split}
\vz_{r1} &\sim \N(\mu_1, Q_1)\\
\vz_{r(t+1)} | \vz_{rt} &\sim \N(A \vz_{rt}, Q)\\
x_{rti} | \vz_{rt} & \sim \mathcal{GC}(c_i^T \vz_{rt}, g_i(\cdot))%, i = 1,...,n
\end{split}\]
\item Practical considerations
\begin{itemize}
%\item Set $g_i(0) = 0$ without loss of generality;
\item Set $g_i(k) = -\infty$ for $k > K$ to facilitate computation.
\item Ridge penalty on the $2^{\text{nd}}$ difference of $g_i(\cdot)$ to avoid overfitting; $\text{penalty} = \lambda \sum_{k=1}^{K-1} (g_i(k-1) - 2 g_i(k) + g_i(k+1))^2$.
%\item Set $g_i(0) = 0$ without loss of generality.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Variational Bayes Expectation Maximization (VBEM)}
\begin{itemize}
\item $\vx$: data, $\vz$: latent variables, $\theta$: model parameters,
\item Often hard to compute $p_\theta(\vx) = \int p_\theta(\vx, \vz) d \vz$ and $p_\theta(\vz | \vx)$.
\item Approximate the posterior by a \alert{tractable} distribution family.
\[p_{\theta}(\vz | \vx) \approx q(\vz) \in \mathcal{Q}\]
\item Optimize a \alert{lower bound of log likelihood}, or ELBO %w.r.t. both the model parameters and the variational distribution.
\[\begin{split}
&\text{ELBO}(\theta, q) = \int \left[\log \frac{p_{\theta}(\vx, \vz)}{q(\vz)}\right] q(\vz) d\vz \leq \log p_{\theta}(\vx) \\
%&= \log p_{\theta}(\vx) - \text{KL}(q(\vz) || p_\theta(\vz | \vx)) \leq \log p_{\theta}(\vx) % \log p_\theta(\vx) =& \log \int p_{\theta}(\vx, \vz) d \vz\\
\end{split}\]
%\[\begin{split}
%\log p_\theta(\vx) =& \log \int p_{\theta}(\vx, \vz) d \vz\\
%\geq& \int \left[\log p_{\theta}(\vx, \vz) - \log q(\vz)\right] q(\vz) d\vz
%\end{split}\]
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Variational Bayes Expectation Maximization (VBEM)}
\begin{itemize}
\item VBEM: Optimize $\text{ELBO}(\theta, q) \leq \log p_\theta(\vx)$ iteratively %by \alert{coordinate ascent}
\begin{itemize}
\item E-step: For a fixed $\theta$, optimize $q$ %(such that $q(\vz) \approx p_{\theta}(\vz | \vx)$)
\item M-step: For a fixed $q$, optimize $\theta$
%\item Iterate between E-step and M-step until convergence %, each iteration gives a higher ELBO and hopefully a higher log likelihood
\end{itemize}
\item VBEM for GCLDS
\begin{itemize}
\item We set $q$ to be multivariate Gaussian
\item We derive a looser but tractable ELBO%The vanilla ELBO is still intractable, we use Jensen's inequality to get a tractable but looser bound. %(looser bound $\Rightarrow$ worse performance?)
%\item Fast initialization by Laplace approximation in .
\item E-step: fast Laplace approximation initialization + dual optimization \parencite{emtiyaz2013fast}
\item M-step: convex optimization + analytical solution
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Experiments}
\begin{itemize}
\item For both simulated and real dataset, we compare GCLDS with PLDS (Poisson observation model)
%\XSolid \Checkmark
%\item On both simulated and real data
%GCLDS captures both mean and variance of the data well, PLDS capture
\begin{center}
\begin{tabular}{ cccc }
\hline
& Mean & \alert{Variance} & \alert{Likelihood} \\
\hline
PLDS & \cmark & \xmark& \xmark \\
\alert{GCLDS} &\cmark &\cmark &\cmark \\
\hline
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: data}
\begin{tabular}{ cc }
{\small Data} & {\small Variance and mean of spike counts}\\
%\includegraphics[width = 0.40\textwidth]{./figs/gclds/fig_monkey.png}&
\includegraphics[width = 0.40\textwidth]{./figs/overview/monkey.jpg}&
\includegraphics[width = 0.45\textwidth]{./figs/gclds/fig_var_obs_Move_seq14.pdf}
\end{tabular}
\begin{itemize}
\item Center-out reaching experiments
\item Multi-electrode array recording
\item Strong \alert{under-dispersion}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: algorithms}
\begin{itemize}
\item Main algorithms to be compared
\begin{itemize}
\item \alert{PLDS}: Poisson observation \parencite{Macke2015}
\item \alert{GCLDS-full}: Generalized count observation, individual $g(\cdot)$ across neurons
\end{itemize}
\item Two control cases for GCLDS
\begin{itemize}
\item \alert{GCLDS-linear}: truncated linear $g(\cdot)$ (truncated Poisson)
\item \alert{GCLDS-simple}: $g(\cdot)$ shared across neurons (up to a linear function)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: single neuron fit}
\begin{tabular}[t]{ccc}
{\small Fitted $g(\cdot)$} & {\small Fitted mean} & {\small Fitted variance}\\
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu1_g.pdf}}&
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu1_mean.pdf}}&
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu1_var.pdf}}\\
%B)&\raisebox{-0.85\totalheight}{\includegraphics[width=0.3\textwidth,clip = true]{figs/fig_gclds/fig_1625526_seq14_xDim8_neu2_g.pdf}}&
%\raisebox{-0.85\totalheight}{\includegraphics[width=0.3\textwidth,clip = true]{figs/fig_gclds/fig_1625526_seq14_xDim8_neu2_mean.pdf}}&
%\raisebox{-0.85\totalheight}{\includegraphics[width=0.3\textwidth,clip = true]{figs/fig_gclds/fig_1625526_seq14_xDim8_neu2_var.pdf}}\\
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu3_g.pdf}}&
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu3_mean.pdf}}&
\raisebox{-0.85\totalheight}{\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_962346_seq14_xDim8_neu3_var.pdf}}\\
%&{\graphFont Dates}&\\
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: population fit}
%\begin{centering}
\begin{itemize}
\item Leave-one-neuron-out prediction
%\begin{itemize}
%\item Separate trials into training and testing
%\item Use training data to learn parameters
%\item For test data, drop one neuron and use other neurons to predict its firing rate
%\end{itemize}
\end{itemize}
\begin{center}
\begin{tabular}[t]{cc}
{\small MSE reduction} & {\small NLL reduction} \\
\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_MSE_band_George_Move_NULL.pdf}&
\includegraphics[scale=0.5,clip = true]{figs/gclds/fig_likelihood_band_George_Move_NULL.pdf}%&
%\includegraphics[scale=0.43,clip = true]{figs/gclds/fig_var_JOB962346_seq14_xDim8_plot.pdf}
\end{tabular}
\end{center}
%\end{centering}
\end{frame}
\begin{frame}
\frametitle{Conclusion and discussion}
\begin{itemize}
\item Summary
\begin{itemize}
\item Incorporated generalized count family into state space models.
\item Developed VBEM algorithm.
\item Observed superior fitted results on real neural data.
\end{itemize}
%\item Future work
%\begin{itemize}
%\item Time-varying dispersion structure.
%\item Hierarchical model that share information of $g(\cdot)$ across neurons.
%\item Generative models for under-dispersion.
%\end{itemize}
\item \alert{Gao Y}, Buesing L, Shenoy KV, Cunningham JP (2015) High-dimensional neural spike train analysis with generalized count linear dynamical systems. NIPS 2015.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%% fLDS %%%%%%%%
\subsection[]{Linear dynamical neural population models through nonlinear embeddings}
\begin{frame}
\frametitle{Motivation}
% TODO: Explain this data better? Or not using this figure?
%\begin{tabular}{cl}
%\parbox{0.6\textwidth}{
\begin{itemize}
\item Neural activities lie in a low-dimensional \alert{nonlinear manifold} rather than a \alert{linear subspace}
\item Flexible observation model makes the state space model more expressive
\end{itemize}
%}
%&
%\hspace{-1cm}
%\begin{tabular}{c}
%\includegraphics[scale=0.5,clip = true]{figs/flds/fig_V1_single_3concat_onlyobservation.pdf}
%\end{tabular}
%\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Model formulation: fLDS}
\begin{itemize}
\item Linear dynamical systems with \alert{nonlinear link} and count observation
\[\begin{split}
\vz_{r1} \sim& \N(\mu_1, Q_1)\\
\vz_{r(t+1)} | \vz_{rt} \sim& \N(A \vz_{rt}, Q)\\
x_{rti} \sim& \text{Poisson}(\alert{f}_i(\vz_{rt})) \text{ (PfLDS) } \\
&\text{ or }\mathcal{GC}(\alert{f}_i(\vz_{rt}), g_i(\cdot)) \text{ (GCfLDS)}%, i = 1,...,n
\end{split}\]
where $f_i$ is a nonlinear function parameterized by a neural network.
%\item Linear latent dynamics: simple, tractable, interpretable
%\item Nonlinear observation: flexible
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Inference algorithm: AEVB (high level idea)}
%\begin{itemize}
%\item Auto-encoding Variational Bayes (AEVB)
\begin{itemize}
\item Auto-encoding Variational Bayes (AEVB)
\item Learn a \alert{mapping (recognition model)} from data to the approximate posterior distribution of latent variable.
\item Jointly optimize the generative model parameters and recognition model parameters.
\item Naturally incorporate stochastic optimization to handle large datasets.
\item Tractable for a large class of graphical models
\end{itemize}
%\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Inference algorithm: AEVB (algorithm)}
\begin{itemize}
\item Decompose ELBO by trials
\[\begin{split}
\text{ELBO}(\theta, q) %=& \int \left[\log p_{\theta}(\vx, \vz) - \log q(\vz)\right] q(\vz) d\vz\\
=& \sum_{r=1}^{R} \int \left[\log \frac{p_{\theta}(\vx_r, \vz_r)}{q(\vz_r)}\right] q(\vz_r) d\vz_r
\end{split}\]
\item Map data $\vx_r$ to $q(\vz_r)$ by a parameterized function
\[q(\vz_r) = q_\phi(\vz_r | \vx_r) = \N\left(\mu_\phi(\vx_r), \Sigma_\phi(\vx_r)\right)\]
\item Learn both $\theta$ and $\phi$ by \alert{stochastic} gradient descent on ELBO
\[\begin{split}
\grad\text{ELBO}(\theta, q_\phi) \approx& R \times \grad \int \left[\log \frac{p_{\theta}(\vx_r, \vz_r)}{q_\phi(\vz_r | \vx_r)}\right] q_\phi(\vz_r| \vx_r) d\vz_r\\
\approx& R \times \text{an unbiased estimator of gradient} %\\
%&\text{{\small \alert{(Reparameterization trick)}}}
\end{split}\]
%\item Do stochastic optimization with gradient of a single trial
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Structure of the recognition model}
\begin{itemize}
\item Generative model:
\[p_\theta(\vz_r | \vx_r) \propto \underbrace{p_\theta(\vz_{r1})
\prod_{t=1}^{T-1}p_\theta(\vz_{t(t+1)} | \vz_{rt})}_{Gaussian}
\prod_{t=1}^T \underbrace{p_\theta(\vx_{rt} | \vz_{rt})}_{\alert{Complicated}}
\]
%No analytical form, hard to sample.
\item Recognition model, product-of-Gaussian form:
\[q_\phi(\vz_r | \vx_r) \propto \underbrace{q_\phi(\vz_{r1})
\prod_{t=1}^{T-1}q_\phi(\vz_{r(t+1)} | \vz_{rt}) }_{Gaussian}
\prod_{t=1}^T \underbrace{q_\phi(\vz_{rt} | \vx_{rt})}_{\alert{Gaussian}}
\]
%Approximates a complicated factor with a Gaussian factor dependent on the data in a complicated way.
\item Multivariate Gaussian distribution with block tri-diagonal precision matrix. %Maintaining the Markovian structure.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Experiments}
\begin{center}
\begin{tabular}{ ccccc }
\hline
& Mean & Variance & Likelihood & \alert{Concise representation}\\
\hline
PLDS & \cmark & \xmark& \xmark & \xmark \\
GCLDS &\cmark &\cmark &\cmark & \xmark \\
\alert{PfLDS} & \cmark & \xmark& \xmark & \cmark\\
\alert{GCfLDS} &\cmark &\cmark &\cmark & \cmark \\
\hline
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: primate visual cortex}
%\hspace{-1cm}
\begin{tabular}{cc}
\small{Firing rate} & \\
\begin{tabular}{c}
\includegraphics[scale=0.45,clip = true]{figs/flds/fig_V1_single_3concat_onlyobservation.pdf}
\end{tabular}
&
\begin{tabular}{c}
%PLDS \\
%\includegraphics[scale=0.5,clip = true]{figs/flds/fig_V1_mat_trajectory_3concat.pdf}\\
%PfLDS \\
%\includegraphics[scale=0.5,clip = true]{figs/flds/fig_V1_py_trajectory_3concat.pdf}
\end{tabular}
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: primate visual cortex}
%\hspace{-1.2cm}
\begin{tabular}{ccc}
{\small \visible<1->Firing rate} & \visible<2->{\hspace{-0.6cm}\small{Latent projection}} & \visible<3->{\hspace{-0.6cm}\small{1-step-ahead prediction}}\\
%\hline
\begin{tabular}{c}
\visible<1->{\includegraphics[scale=0.45,clip = true]{figs/flds/fig_V1_single_3concat.pdf}}
%\visible<2->{\includegraphics[scale=0.5,clip = true]{figs/flds/fig_V1_single_3concat.pdf} }
\end{tabular}
&
\hspace{-0.6cm}
\begin{tabular}{c}
\visible<2->{\scriptsize{PLDS} \\
\includegraphics[scale=0.4,clip = true]{figs/flds/fig_V1_mat_trajectory_3concat.pdf}\\
\scriptsize{PfLDS} \\
\includegraphics[scale=0.4,clip = true]{figs/flds/fig_V1_py_trajectory_3concat.pdf}}
\end{tabular}
&
\hspace{-0.6cm}
\visible<3->{\begin{tabular}{c}
\scriptsize{MSE reduction}\\
\includegraphics[scale=0.40,clip = true, trim = 0cm 0cm 0cm 0.2cm]{figs/flds/fig_V1_MSE_3concat.pdf}\\
\scriptsize{NLL reduction}\\
\includegraphics[scale=0.40,clip = true, trim = 0cm 0cm 0cm 0.2cm]{figs/flds/fig_V1_NLL_3concat.pdf}\\
\end{tabular}}
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: Primate motor cortex}
\begin{tabular}{ cc }
{\small Data} & {\small Reaching trajectory} \\
%\includegraphics[width = 0.45\textwidth]{./figs/gclds/fig_monkey.png}&
\includegraphics[width = 0.45\textwidth]{./figs/overview/monkey.jpg}&
\includegraphics[width = 0.40\textwidth]{./figs/flds/fig_GeorgeMove_trajectory.pdf}
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: Primate motor cortex}
\begin{itemize}
\item Latent projection with $2$ latent dimensions
\end{itemize}
\begin{tabular}{ ccc }
{\small Reaching trajectory} & {\small PLDS} & {\small PfLDS} \\
\includegraphics[width = 0.30\textwidth]{./figs/flds/fig_GeorgeMove_trajectory.pdf}&
\includegraphics[width = 0.30\textwidth]{./figs/flds/fig_GeorgeMove_2dvisual_mat_PLDS.pdf}&
\includegraphics[width = 0.30\textwidth]{./figs/flds/fig_GeorgeMove_2dvisual_py_PLDS.pdf}
\end{tabular}
\begin{itemize}
\item Recovering the behavior structure from neural data in a \alert{unsupervised} fashion.
\item \alert{Concise} and \alert{informative} latent dimensions.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: Primate motor cortex}
\begin{itemize}
\item One-step-ahead predictive performance
\end{itemize}
\begin{center}
\begin{tabular}{ cc}
{\small MSE reduction} & {\small NLL reduction}\\
\includegraphics[scale = 0.6]{./figs/flds/fig_GeorgeMove_MSE_GC.pdf}&
\includegraphics[scale = 0.6]{./figs/flds/fig_GeorgeMove_NLL_GC.pdf}
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Conclusion and discussion}
\begin{itemize}
\item Summary
\begin{itemize}
\item Incorporated nonlinear observation into state space models.
\item Developed AEVB algorithm (flexible and scalable).
\item Obtained concise latent representations.
\end{itemize}
%\item Future work
%\begin{itemize}
%\item Better stochastic optimization scheme.
%\item Interpretable nonlinearity.
%\item Application on more complex datasets.
%\end{itemize}
\item \alert{Gao Y}*, Archer E*, Paninski L, Cunningham JP (2016) Linear dynamical neural population models through nonlinear embeddings. NIPS 2016. (* = equal contribution)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%% ROI detection %%%%%%%%%%%%%%%%%%%%%%%%%
\section[]{Region of Interest Detection for Calcium Imaging Data}
\begin{frame}
\frametitle{Introduction: calcium imaging data}
\begin{itemize}
\item Basic principle: the \alert{spiking} activity of a neuron induces a transient increase in \alert{calcium concentration}, which can be indirectly observed by recording the \alert{fluorescent properties} of certain calcium indicators.
%\item Allows simultaneous recording from hundreds of thousands of neurons.
\end{itemize}
\begin{center}
{\scriptsize
\begin{tabular}[t]{c}
Spike train (cartoon) \\
\includegraphics[scale=0.4,clip = true]{figs/ROI_cartoon/fig_cartoon_spike_1.pdf}\\
Calcium trace (cartoon) \\
\includegraphics[scale=0.4,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_1.pdf}
\end{tabular}
}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Introduction: calcium imaging data}
\begin{itemize}
\item Calcium imaging enables \alert{simultaneous} recording of \alert{many} neurons.
\end{itemize}
%{\scriptsize
\begin{tabular}[t]{ccccc}
Neuron shape & $\times$ & Calcium trace & $+$ Noise $=$ &Obseravtion\\
\hspace{-1cm}\begin{minipage}{0.2\textwidth}
\begin{tabular}[t]{ccc}
\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_1.pdf}&
\hspace{-0.3cm}\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_2.pdf}&
\hspace{-0.3cm}\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_3.pdf}
\end{tabular}
\end{minipage}
&&
\begin{minipage}{0.2\textwidth}
%\begin{tabular}[t]{c}
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_1.pdf}\\
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_2.pdf}\\
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_3.pdf}
%\end{tabular}
\end{minipage}
&&
\begin{minipage}{0.06\textwidth}
\begin{center}
\animategraphics[width=1.3cm, height=2.6cm, loop]{12}{figs/sim_vid/fig_cartoon_spike-}{1}{50}
%\movie[width=1.3cm, height=2.6cm, borderwidth=0pt, autostart, loop]{}{video_cal_simulation_3neurons_autumn.avi}
\end{center}
\end{minipage}
\end{tabular}
\begin{itemize}
\item \alert{Goal}: recover the neuron shape and calcium trace given the observation.
\end{itemize}
%}
\end{frame}
\begin{comment}
\begin{frame}
\frametitle{Introduction: calcium imaging data}
\begin{itemize}
\item Calcium imaging enables \alert{simultaneous} recording of \alert{many} neurons.
\end{itemize}
%{\scriptsize
\begin{tabular}[t]{ccccc}
Neuron shape & $\times$ & Calcium trace & $+$ Noise $=$ &Obseravtion\\
\hspace{-1cm}\begin{minipage}{0.2\textwidth}
\begin{tabular}[t]{ccc}
\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_1.pdf}&
\hspace{-0.3cm}\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_2.pdf}&
\hspace{-0.3cm}\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_neuron_3.pdf}
\end{tabular}
\end{minipage}
&&
\begin{minipage}{0.2\textwidth}
%\begin{tabular}[t]{c}
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_1.pdf}\\
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_2.pdf}\\
\includegraphics[scale=0.18,clip = true]{figs/ROI_cartoon/fig_cartoon_calcium_3.pdf}
%\end{tabular}
\end{minipage}
&&
\begin{minipage}{0.06\textwidth}
\begin{center}
\includegraphics[scale=0.2,clip = true]{figs/ROI_cartoon/fig_cartoon_frame_297.pdf}
\end{center}
\end{minipage}
\end{tabular}
\begin{itemize}
\item \alert{Goal}: recover the neuron shape and calcium trace given the observation.
\end{itemize}
%}
\end{frame}
\end{comment}
\begin{frame}
\frametitle{Model formulation}
\begin{itemize}
\item $X \in \mathbb{R}^{N \times T}$ represents the calcium imaging data, where each column is a (vectorized) frame that contains $N$ pixels
\item Decompose $X$ into a product of $K$ \alert{spatial component} and \alert{temporal component}% (neural acitivities)
\[X = D A^T + \text{noise}\]
\begin{itemize}
\item $D = [D_1,...,D_K] \in \mathbb{R}^{N \times K}$ represents the neuron shapes
\item $A = [A_1,...,A_K] \in \mathbb{R}^{T \times K}$ is the neural activities%, $K$ is the number of neurons.
\end{itemize}
\item Further exploit structure of the components (localized neuron shapes)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Model formulation: objective}
\begin{itemize}
\item Structured matrix factorization
\[
%\label{equ:opt}
\begin{aligned}
& \underset{D, A}{\text{minimize}}
& & \| X - D A^T \|_2^2 + f_D(D), \\
& \text{subject to}
& & D_k \in \mathcal{D}_{w}^+; k = 1, \ldots, K,\\
&
& & \|A_k\|_2 \leq c_k,
\end{aligned}
\]
\item $\mathcal{D}_{w}^+$: non-negative vectors whose nonzero values is within a $w \times w$ window
\item $f_D(D)$ regularizes the neuron shape (will discuss later)
\item $\|A_k\|_2 \leq c_k$ avoids degenerate solution
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Greedy algorithm}
\begin{itemize}
\item Identify ROIs one at a time, using the residual un-explained by existing signals.
\item At iteration $k$, given the current residue (unexplained by existing ROIs):
\begin{itemize}
\item \alert{Greedy identification}: Identify the location $p_k$ where the Gaussian kernel explains most of the data (across time).
\item \alert{Shape fine tuning}: Locally optimize the spatial and temporal component.
\item \alert{Residue update}: Subtract the newly identified signal.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Shape fine tuning}
\begin{itemize}
\item Given current residue $R$, an identified center pixel $p_k$, denote $S_k$ as a $w \times w$ window centered at $p_k$
\[
\begin{aligned}
& \underset{D_k, A_k}{\text{minimize}}
& & \| R - D_k A_k^T \|^2 + f(D_k), \\%\sum_{i = 1}^3 \lambda_i f_i(D_k),\\
& \text{subject to}
& & D_{kp} \geq 0, p \in S_k,\\
&
& & D_{kp} = 0, p \notin S_k,\\
&
& & \|A_k\|_2 \leq c_k,
\end{aligned}
\]
%\begin{itemize}
\item $f(D_k) = \sum_{i=1}^3 \lambda_i f_i(D_k)$
%where
\begin{itemize}
\item $f_1(D_k) = \sum_p \tau_{(p, p_k)} | D_{kp} |$ encourages sparsity
\item $f_2(D_k) = \sum_p (D_{kp} - G_{p_k})^2$ encourages Gaussian shape
\item $f_3(D_k) = \sum_{\text{$p_1$ and $p_2$ are neighbors}} (D_{kp_1} - D_{kp_2})^2$ encourages smoothness
\end{itemize}
\item Optimize by block coordinate descent
%\item Need to tune regularization parameters, not necessarily good since those would shrink the estimated shape
\end{itemize}
%\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: sample patch, no shape regularization}
{\small
\begin{tabular}[t]{cc}
\parbox{0.3\textwidth}{Mean image with fitted ROI locations}& Fitted ROI shape
\vspace{0.5cm}
\\
%\multicolumn{2}{c}{Gaussian kernel shape} \\
\includegraphics[scale=0.35,clip = true]{figs/ROI/fig_Misha_plain_comp.pdf}&
\includegraphics[scale=0.35,clip = true]{figs/ROI/fig_Misha_plain_shape.pdf}\\
%\multicolumn{2}{c}{Ring shape} \\
%\includegraphics[scale=0.45,clip = true]{figs/fig_ROI/fig_simulation_comp_Ring.pdf}&
%\includegraphics[scale=0.45,clip = true]{figs/fig_ROI/fig_simulation_shape_Ring.pdf}\\
%\\
\end{tabular}
}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: sample patch, with shape regularization}
{\small
\begin{tabular}[t]{cc}
\parbox{0.3\textwidth}{Mean image with fitted ROI locations}& Fitted ROI shape
\vspace{0.5cm}
\\
%\multicolumn{2}{c}{Gaussian kernel shape} \\
\includegraphics[scale=0.35,clip = true]{figs/ROI/fig_Misha_smooth_comp.pdf}&
\includegraphics[scale=0.35,clip = true]{figs/ROI/fig_Misha_smooth_shape.pdf}\\
%\multicolumn{2}{c}{Ring shape} \\
%\includegraphics[scale=0.45,clip = true]{figs/fig_ROI/fig_simulation_comp_Ring.pdf}&
%\includegraphics[scale=0.45,clip = true]{figs/fig_ROI/fig_simulation_shape_Ring.pdf}\\
%\\
\end{tabular}
}
\end{frame}
\begin{frame}
\frametitle{Real data analysis: video}
\begin{center}
%\movie[width=1\textwidth, height=0.75\textwidth, borderwidth=0pt, autostart, repeat]{}{video_misha_result.avi}
\animategraphics[width=1\textwidth, height=0.75\textwidth, loop]{12}{figs/res_vid/fig_frame-}{1}{100}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Conclusion and discussion}
\begin{itemize}
\item Summary
\begin{itemize}
\item Formulated calcium imaging ROI detection as a structured matrix factorization problem.
\item Developed a fast greedy algorithm.
%\item Fast ROI detection algorithm