-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprompt_tuning.py
274 lines (230 loc) · 8.69 KB
/
prompt_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any
import functools
import ml_collections
import numpy as np
import jax
import jax.numpy as jnp
from flax.training import checkpoints as flax_checkpoints
from nets.simplified_bert_prompt import PromptGenerator
from libml import parallel_decode
from trainer.prompt_trainer import PromptTrainer
from trainer.prompt_trainer import load_model_variables
from utils.vis import visualize_image
TRANSFORMER_CKPT_PATH = 'checkpoints/maskgit_imagenet256_checkpoint'
TOKENIZER_CKPT_PATH = 'checkpoints/tokenizer_imagenet256_checkpoint'
def get_default_config():
"""Gets model configuration."""
vqvae_config = ml_collections.ConfigDict()
vqvae_config.codebook_size = 1024
vqvae_config.embedding_dim = 256
vqvae_config.quantizer = 'vq'
vqvae_config.filters = 128
vqvae_config.num_res_blocks = 2
vqvae_config.channel_multipliers = [1, 1, 2, 2, 4]
vqvae_config.embedding_dim
vqvae_config.conv_downsample = False
vqvae_config.norm_type = 'GN'
vqvae_config.activation_fn = 'swish'
bert_config = ml_collections.ConfigDict()
bert_config.num_embeds = 768
bert_config.num_heads = 16
bert_config.num_layers = 24
bert_config.intermediate_size = 768 * 4
bert_config.dropout_rate = 0.1
bert_config.latent_size = 16
bert_config.pad_token_id = -1
config = ml_collections.ConfigDict()
config.vqgan_ckpt_path = TOKENIZER_CKPT_PATH
config.transformer_ckpt_path = TRANSFORMER_CKPT_PATH
config.vqvae = vqvae_config
config.transformer = bert_config
# prompt config
config.prompt = ml_collections.ConfigDict()
config.prompt.embedding_size = config.transformer.num_embeds
config.prompt.hidden_size = 0
config.prompt.seq_length = 32
config.prompt.dropout_rate = 0.1
# optimizer
config.optimizer = ml_collections.ConfigDict()
config.optimizer.lr = 0.001
config.optimizer.beta1 = 0.9
config.optimizer.beta2 = 0.96
config.optimizer.warmup_steps = 0
config.optimizer.weight_decay = 0
config.label_smoothing = 0.1
config.mask_scheduling_method = 'cosine'
config.seed = 42
config.dtype = 'float32'
config.batch_size = 32
config.eval_batch_size = 32
config.num_train_epochs = 100
config.checkpoint_every_epochs = 10
config.log_every_epochs = 1
# dataset
config.dataset = 'caltech101'
config.image_size = 256
config.shuffle_buffer_size = 1000
config.train_shuffle = True
config.lock()
return config
def load_prompt_from_checkpoint(checkpoint_dir, config):
"""Loads prompt generator from the checkpoint."""
prompt_model = PromptGenerator(
vocab_size=config.num_class,
embedding_size=config.prompt.embedding_size,
hidden_size=config.get("prompt.hidden_size",
config.transformer.num_embeds),
hidden_dropout_prob=config.get("prompt.dropout_rate",
config.transformer.dropout_rate),
seq_length=config.prompt.seq_length,
prefix="prompt")
prompt_state = flax_checkpoints.restore_checkpoint(checkpoint_dir, None)
return prompt_model, prompt_state
def prompt_decode(code_input,
cond_input,
rng,
num_iter=12,
choice_temperature=4.5,
config=Any,
transformer_model=Any,
transformer_variables=Any,
prompt_model=Any,
prompt_variables=Any):
"""Decodes (synthesis) with prompt."""
def tokens_to_logits(seq):
logits = transformer_model.apply(
transformer_variables, (seq, cond_embeddings), deterministic=True)
logits = logits[:, -(config.transformer.latent_size**2 +
1):, :config.vqvae.codebook_size]
return logits
cond_embeddings = prompt_model.apply(
prompt_variables, cond_input, mutable=False, deterministic=True)
# output size is [batch_size, num_iter, seq_lenth]
output_indices = parallel_decode.decode(
code_input,
rng,
tokens_to_logits,
num_iter=num_iter,
choice_temperature=choice_temperature)
return output_indices
def detokenizer(indices, target_shape, vqvae_model, vqvae_variables):
"""Decodes latent indices to images using VQGAN model."""
indices = jnp.reshape(indices, target_shape)
return vqvae_model.apply(
vqvae_variables,
indices,
method=vqvae_model.decode_from_indices,
mutable=False)
class Sampler():
"""Synthesize images."""
def __init__(self, config, checkpoint_dir):
self.config = config
self.checkpoint_dir = checkpoint_dir
# Load pretrained models.
(vqvae_model, vqvae_variables, transformer_model,
transformer_variables) = load_model_variables(self.config,
self.config.dtype)
# Load prompt.
(prompt_model,
prompt_state) = load_prompt_from_checkpoint(self.checkpoint_dir,
self.config)
self.sample_tokens_pmap = jax.pmap(
functools.partial(
prompt_decode,
config=self.config,
transformer_model=transformer_model,
transformer_variables=transformer_variables,
prompt_model=prompt_model,
prompt_variables=prompt_state['model_state']),
in_axes=0,
donate_argnums=(1,),
static_broadcasted_argnums=(3, 4))
self.detokenizer_pmap = jax.pmap(
functools.partial(
detokenizer,
target_shape=[
-1, config.transformer.latent_size,
config.transformer.latent_size
],
vqvae_model=vqvae_model,
vqvae_variables=vqvae_variables),
in_axes=0,
donate_argnums=(1,))
def get_dummy_input(self, device_batch_size=4):
"""Gets dummy input for generation."""
num_devices = jax.device_count()
batch = {
'label':
jnp.tile(
jnp.arange(num_devices)[..., None], (1, device_batch_size)),
'code':
-1 * jnp.ones([
num_devices, device_batch_size,
self.config.transformer.latent_size**2 + 1
])
}
return batch['code'], batch['label'][..., None]
def sample(self, rng, num_iter=12, temperature=4.5, device_batch_size=4):
"""Samples image."""
num_devices = jax.device_count()
code_input, cond_input = self.get_dummy_input(device_batch_size)
output_indices = self.sample_tokens_pmap(code_input, cond_input,
jax.random.split(rng, num_devices),
num_iter, temperature)
outputs = jnp.array(output_indices, dtype=jnp.int32)
outputs = jnp.array(
output_indices[:, :, -1, -self.config.transformer.latent_size**2:],
dtype=jnp.int32)
return self.detokenizer_pmap(
outputs) # num_devices x device_batch_size x imsize
def visualize(self, gen_images):
"""Visualizes generated image."""
gen_images = np.reshape(
np.transpose(gen_images, [0, 2, 1, 3, 4]), [
gen_images.shape[0] * gen_images.shape[2],
gen_images.shape[1] * gen_images.shape[3], gen_images.shape[4]
])
visualize_image(gen_images, figsize=(30, 30))
def sample_and_visualize(self,
rng,
num_iter=12,
temperature=4.5,
device_batch_size=4):
gen_images = self.sample(rng, num_iter, temperature, device_batch_size)
self.visualize(gen_images)
return gen_images
def main():
"""Main."""
workdir = './results/1'
config = get_default_config()
with config.unlocked():
# Change default values in config
config.seed = 43
# Run prompt tuning.
trainer = PromptTrainer(config, workdir)
trainer.train()
# Sample.
checkpoint_dir = os.path.join(workdir, 'checkpoints')
sampler = Sampler(trainer.config, checkpoint_dir)
gen_images = sampler.sample(rng=jax.random.PRNGKey(0))
# Visualize.
gen_images = np.reshape(
np.transpose(gen_images, [0, 2, 1, 3, 4]), [
gen_images.shape[0] * gen_images.shape[2],
gen_images.shape[1] * gen_images.shape[3], gen_images.shape[4]
])
visualize_image(gen_images, figsize=(30, 30))