-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
203 lines (179 loc) · 9.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import sys
import time
import datetime
import argparse
import logging
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch import distributed as dist
from apex import amp
from configs.default_img import get_img_config
from configs.default_vid import get_vid_config
from data import build_dataloader
from models import build_model
from losses import build_losses
from tools.utils import save_checkpoint, set_seed, get_logger
from train import train_cal, train_cal_with_memory
from test import test, test_prcc
VID_DATASET = ['ccvid']
def parse_option():
parser = argparse.ArgumentParser(description='Train clothes-changing re-id model with clothes-based adversarial loss')
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file')
# Datasets
parser.add_argument('--root', type=str, help="your root path to data directory")
parser.add_argument('--dataset', type=str, default='ltcc', help="ltcc, prcc, vcclothes, ccvid, last, deepchange")
# Miscs
parser.add_argument('--output', type=str, help="your output path to save model and logs")
parser.add_argument('--resume', type=str, metavar='PATH')
parser.add_argument('--amp', action='store_true', help="automatic mixed precision")
parser.add_argument('--eval', action='store_true', help="evaluation only")
parser.add_argument('--tag', type=str, help='tag for log file')
parser.add_argument('--gpu', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
args, unparsed = parser.parse_known_args()
if args.dataset in VID_DATASET:
config = get_vid_config(args)
else:
config = get_img_config(args)
return config
def main(config):
# Build dataloader
if config.DATA.DATASET == 'prcc':
trainloader, queryloader_same, queryloader_diff, galleryloader, dataset, train_sampler = build_dataloader(config)
else:
trainloader, queryloader, galleryloader, dataset, train_sampler = build_dataloader(config)
# Define a matrix pid2clothes with shape (num_pids, num_clothes).
# pid2clothes[i, j] = 1 when j-th clothes belongs to i-th identity. Otherwise, pid2clothes[i, j] = 0.
pid2clothes = torch.from_numpy(dataset.pid2clothes)
# Build model
model, classifier, clothes_classifier = build_model(config, dataset.num_train_pids, dataset.num_train_clothes)
# Build identity classification loss, pairwise loss, clothes classificaiton loss, and adversarial loss.
criterion_cla, criterion_pair, criterion_clothes, criterion_adv = build_losses(config, dataset.num_train_clothes)
# Build optimizer
parameters = list(model.parameters()) + list(classifier.parameters())
if config.TRAIN.OPTIMIZER.NAME == 'adam':
optimizer = optim.Adam(parameters, lr=config.TRAIN.OPTIMIZER.LR,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY)
optimizer_cc = optim.Adam(clothes_classifier.parameters(), lr=config.TRAIN.OPTIMIZER.LR,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY)
elif config.TRAIN.OPTIMIZER.NAME == 'adamw':
optimizer = optim.AdamW(parameters, lr=config.TRAIN.OPTIMIZER.LR,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY)
optimizer_cc = optim.AdamW(clothes_classifier.parameters(), lr=config.TRAIN.OPTIMIZER.LR,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY)
elif config.TRAIN.OPTIMIZER.NAME == 'sgd':
optimizer = optim.SGD(parameters, lr=config.TRAIN.OPTIMIZER.LR, momentum=0.9,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY, nesterov=True)
optimizer_cc = optim.SGD(clothes_classifier.parameters(), lr=config.TRAIN.OPTIMIZER.LR, momentum=0.9,
weight_decay=config.TRAIN.OPTIMIZER.WEIGHT_DECAY, nesterov=True)
else:
raise KeyError("Unknown optimizer: {}".format(config.TRAIN.OPTIMIZER.NAME))
# Build lr_scheduler
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=config.TRAIN.LR_SCHEDULER.STEPSIZE,
gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE)
start_epoch = config.TRAIN.START_EPOCH
if config.MODEL.RESUME:
logger.info("Loading checkpoint from '{}'".format(config.MODEL.RESUME))
checkpoint = torch.load(config.MODEL.RESUME)
model.load_state_dict(checkpoint['model_state_dict'])
classifier.load_state_dict(checkpoint['classifier_state_dict'])
if config.LOSS.CAL == 'calwithmemory':
criterion_adv.load_state_dict(checkpoint['clothes_classifier_state_dict'])
else:
clothes_classifier.load_state_dict(checkpoint['clothes_classifier_state_dict'])
start_epoch = checkpoint['epoch']
local_rank = dist.get_rank()
model = model.cuda(local_rank)
classifier = classifier.cuda(local_rank)
if config.LOSS.CAL == 'calwithmemory':
criterion_adv = criterion_adv.cuda(local_rank)
else:
clothes_classifier = clothes_classifier.cuda(local_rank)
torch.cuda.set_device(local_rank)
if config.TRAIN.AMP:
[model, classifier], optimizer = amp.initialize([model, classifier], optimizer, opt_level="O1")
if config.LOSS.CAL != 'calwithmemory':
clothes_classifier, optimizer_cc = amp.initialize(clothes_classifier, optimizer_cc, opt_level="O1")
model = nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
classifier = nn.parallel.DistributedDataParallel(classifier, device_ids=[local_rank], output_device=local_rank)
if config.LOSS.CAL != 'calwithmemory':
clothes_classifier = nn.parallel.DistributedDataParallel(clothes_classifier, device_ids=[local_rank], output_device=local_rank)
if config.EVAL_MODE:
logger.info("Evaluate only")
with torch.no_grad():
if config.DATA.DATASET == 'prcc':
test_prcc(model, queryloader_same, queryloader_diff, galleryloader, dataset)
else:
test(config, model, queryloader, galleryloader, dataset)
return
start_time = time.time()
train_time = 0
best_rank1 = -np.inf
best_epoch = 0
logger.info("==> Start training")
for epoch in range(start_epoch, config.TRAIN.MAX_EPOCH):
train_sampler.set_epoch(epoch)
start_train_time = time.time()
if config.LOSS.CAL == 'calwithmemory':
train_cal_with_memory(config, epoch, model, classifier, criterion_cla, criterion_pair,
criterion_adv, optimizer, trainloader, pid2clothes)
else:
train_cal(config, epoch, model, classifier, clothes_classifier, criterion_cla, criterion_pair,
criterion_clothes, criterion_adv, optimizer, optimizer_cc, trainloader, pid2clothes)
train_time += round(time.time() - start_train_time)
if (epoch+1) > config.TEST.START_EVAL and config.TEST.EVAL_STEP > 0 and \
(epoch+1) % config.TEST.EVAL_STEP == 0 or (epoch+1) == config.TRAIN.MAX_EPOCH:
logger.info("==> Test")
torch.cuda.empty_cache()
if config.DATA.DATASET == 'prcc':
rank1 = test_prcc(model, queryloader_same, queryloader_diff, galleryloader, dataset)
else:
rank1 = test(config, model, queryloader, galleryloader, dataset)
torch.cuda.empty_cache()
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
model_state_dict = model.module.state_dict()
classifier_state_dict = classifier.module.state_dict()
if config.LOSS.CAL == 'calwithmemory':
clothes_classifier_state_dict = criterion_adv.state_dict()
else:
clothes_classifier_state_dict = clothes_classifier.module.state_dict()
if local_rank == 0:
save_checkpoint({
'model_state_dict': model_state_dict,
'classifier_state_dict': classifier_state_dict,
'clothes_classifier_state_dict': clothes_classifier_state_dict,
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(config.OUTPUT, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))
scheduler.step()
logger.info("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
logger.info("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
if __name__ == '__main__':
config = parse_option()
# Set GPU
os.environ['CUDA_VISIBLE_DEVICES'] = config.GPU
# Init dist
dist.init_process_group(backend="nccl", init_method='env://')
local_rank = dist.get_rank()
# Set random seed
set_seed(config.SEED + local_rank)
# get logger
if not config.EVAL_MODE:
output_file = osp.join(config.OUTPUT, 'log_train_.log')
else:
output_file = osp.join(config.OUTPUT, 'log_test.log')
logger = get_logger(output_file, local_rank, 'reid')
logger.info("Config:\n-----------------------------------------")
logger.info(config)
logger.info("-----------------------------------------")
main(config)