-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbackTest.py
281 lines (231 loc) · 11.3 KB
/
backTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pandas as pd
import talib as TA
import numpy as np
import math
from dateutil import relativedelta
import requests
import xml.etree.ElementTree as ET
import datetime
JONBER = 1
MACD = 3
RSI = 4
STOCH = 5
BUY = 2.0
SELL = -2.0
# 네이버에서 주가를 크롤링 하는 함수
def getStockValueFromNaverWithDate(stock_code, start, end):
try:
startDate = datetime.datetime.strptime(start, "%Y%m%d").date()
endDate = datetime.datetime.strptime(end, "%Y%m%d").date()
except:
print("invalid date format ")
return []
count = (endDate - startDate).days
if count < 0:
print("invalid Start, End Date")
return []
url = 'https://fchart.stock.naver.com/sise.nhn?symbol=%s&timeframe=day&startTime=%s&count=%d&requestType=%d' % (stock_code, end, count, 2)
print(url)
r = requests.get(url)
root = ET.fromstring(r.text)
df_org = pd.DataFrame(columns=['Date', 'Open', 'High', 'Low', 'Close', 'AdjClose', 'Volume'])
for data in root.findall("./chartdata/item"):
stockVal = data.attrib['data'].split('|')
stockVal[0] = datetime.datetime.strptime(stockVal[0], "%Y%m%d").date()
stockVal.append(None)
df_new = pd.DataFrame([stockVal], columns=['Date', 'Open', 'High', 'Low','AdjClose', 'Volume', 'Close'])
df_org = df_org.append(df_new, ignore_index=True, sort= False)
# 유효한 날짜의 주가만 추출
df_org = df_org[(df_org.Date >= startDate) & (df_org.Date <= endDate)]
# STR 데이터를 숫자 타입으로 변환
df_org[["Open", "High", "Low", "AdjClose", "Volume"]] = df_org[
["Open", "High", "Low", "AdjClose", "Volume"]].apply(pd.to_numeric)
return df_org
# se_line1, se_line2 의 Gold Cross 와 Dead Cross를 구한다.
def getGoldDeadPosition(se_line1, se_line2):
se_signal = np.sign(se_line1 - se_line2)
se_signal[se_signal == 0] = 1
se_signal = se_signal - se_signal.shift()
# 2, -2 로 구성된 시리즈
return se_signal
def getGoldDeadLineBoundaryPosition(se_signal, base_signal, buy_line, sell_line):
# 두개의 시그널 선 중 기준라인 사이의 값은 영으로 만든다
if buy_line != sell_line:
se_signal.loc[(base_signal > buy_line) & (base_signal < sell_line)] = 0
# BUY LINE 밑에있는 매도 신호는 지운다
se_signal[(base_signal <= buy_line) & (base_signal != 0) & (se_signal == -2)] = 0
# SELL LINE 위에 있는 매수 신호는 지운다 .
se_signal[(base_signal >= sell_line) & (base_signal != 0) & (se_signal == 2)] = 0
else:
se_signal[(base_signal <= buy_line) & (base_signal != 0) & (se_signal == -2)] = 0
# SELL LINE 위에 있는 매수 신호는 지운다 .
se_signal[(base_signal > sell_line) & (base_signal != 0) & (se_signal == 2)] = 0
se_signal[np.isnan(se_signal)] = 0.0
# testDf = pd.DataFrame({'A':se_signal, 'B':slowd, 'C':tmp_se_signal})
return se_signal
# 기술적 분석에 따른 트레이드 포지션을 잡는 코드
def getTradePointFromMomentum(tech_anal_code, df_stock_val):
base_line = []
df_stock_val['trade'] = 0
if tech_anal_code == JONBER:
df_stock_val.loc[df_stock_val.index[0], 'trade'] = BUY
df_stock_val.loc[df_stock_val.index[-1], 'trade'] = SELL
# MACD
elif tech_anal_code == MACD:
se_macd, se_macdsignal, se_macdhist = TA.MACD(df_stock_val.AdjClose, fastperiod=12, slowperiod=26, signalperiod=9)
se_macd = se_macd.round(2)
se_macdsignal = se_macdsignal.round(2)
tmpd = se_macd.copy()
# MACD 가 Sig
se_signal = getGoldDeadPosition(se_macd, se_macdsignal)
se_signal = getGoldDeadLineBoundaryPosition(se_signal, tmpd, 0, 0)
df_stock_val['trade'] = se_signal
# -2.0 DeadCross 2.0 GoldCross SELL, BUY
base_line = [0]
elif tech_anal_code == RSI:
real = TA.RSI(df_stock_val.AdjClose, timeperiod=14)
se_30_sig = getGoldDeadPosition(real, 30)
se_30_sig[se_30_sig == 2] = 0
se_30_sig[se_30_sig == -2] = 2
se_70_sig = getGoldDeadPosition(real, 70)
se_70_sig[se_70_sig == -2] = 0
se_30_sig[se_70_sig == 2] = -2
se_signal = se_30_sig + se_70_sig
df_stock_val['trade'] = se_signal
base_line = [50]
# STHOCH
elif tech_anal_code == STOCH:
SELL_LINE = 70
BUY_LINE = 30
slowk, slowd = TA.STOCH(df_stock_val.High, df_stock_val.Low, df_stock_val.AdjClose,\
fastk_period=12, slowk_period=5, slowk_matype=0, slowd_period=5, slowd_matype=0)
slowk = slowk.round(2)
slowd = slowd.round(2)
tmpd = slowd.copy()
se_signal = getGoldDeadPosition(slowk, slowd)
# Slow D 가 25% 이하에서 %K 가 %d 를 상향 돌파시 매수
# Slow D 가 75% 이상에서 %K 가 %d 를 하향 돌파시 매도
se_signal= getGoldDeadLineBoundaryPosition(se_signal, tmpd, BUY_LINE, SELL_LINE)
df_stock_val['trade'] = se_signal
base_line = [50]
print('Trade List : ')
print(df_stock_val['trade'][df_stock_val['trade'] != 0.0])
print('-------------------------------------')
return df_stock_val, base_line
def doTrading(df_stock_val, balance):
buyList = []
sellList = []
se_trade = df_stock_val['trade'][df_stock_val['trade'] != 0.0]
if len(se_trade[se_trade == 2].index) == 0:
return buyList, sellList, pd.Series(), pd.Series(), pd.Series()
first_buy_idx = se_trade[se_trade == 2].index[0]
df_stock_val['Balance'] = 0.0
df_stock_val['Asset'] = 0.0
df_stock_val['StockCount'] = 0.0
if first_buy_idx == 0:
df_stock_val.loc[0, ['Balance', 'Asset', 'StockCount']] = balance, balance, 0
else:
df_stock_val.loc[0:first_buy_idx , ['Balance', 'Asset', 'StockCount']] = balance, balance, 0
beforeIdx = first_buy_idx
#for idx, value in se_trade.loc[first_buy_idx:].items():
se_idx_list = se_trade.loc[first_buy_idx:].index
#print(se_idx_list)
for idx, realIdx in enumerate(se_idx_list):
if idx == 0 or \
se_trade.loc[realIdx] == BUY and \
se_trade.loc[beforeIdx] != se_trade.loc[realIdx]:
stock_count = math.floor(balance / df_stock_val.loc[realIdx].AdjClose)
balance -= stock_count * df_stock_val.loc[realIdx].AdjClose
#print('buy ', 'Before Trade IDX ', beforeIdx, 'Current Trade IDX: ', realIdx, 'Stock Price: ', df_stock_val.loc[realIdx].AdjClose,
# 'Stock Count : ', stock_count, 'balance: ', balance)
if idx == len(se_idx_list) - 1:
df_stock_val.loc[realIdx: , ['Balance', 'Asset', 'StockCount']] = \
balance, balance + (df_stock_val.loc[realIdx:]['AdjClose']* stock_count), stock_count
#print('end BUY')
else:
next_idx = idx + 1
for remain_idx in range(idx+1, len(se_idx_list)):
if se_trade.loc[se_idx_list[remain_idx]] == SELL:
next_idx = remain_idx
break
if remain_idx == len(se_idx_list)-1:
df_stock_val.loc[realIdx:, ['Balance', 'Asset', 'StockCount']] = \
balance, balance + (df_stock_val.loc[realIdx:][
'AdjClose'] * stock_count), stock_count
else:
df_stock_val.loc[realIdx:se_idx_list[next_idx], ['Balance', 'Asset', 'StockCount']] = \
balance, balance + (df_stock_val.loc[realIdx:se_idx_list[next_idx]]['AdjClose'] * stock_count), stock_count
# print('NOW BUY NEXT Trade IDX ', next_idx)
buyList.append([
df_stock_val.loc[realIdx].Date.strftime("%Y-%m-%d"),
df_stock_val.loc[realIdx].AdjClose
])
beforeIdx = realIdx
elif se_trade.loc[realIdx] == SELL and \
se_trade.loc[beforeIdx] != se_trade.loc[realIdx]:
stock_count = df_stock_val.loc[realIdx]['StockCount']
balance += stock_count * df_stock_val.loc[realIdx].AdjClose
asset = balance
stock_count = 0
# print('sell ', 'Before Trade IDX ', beforeIdx, 'Current Trade IDX: ', realIdx, 'Stock Price: ',
# df_stock_val.loc[realIdx].AdjClose, 'Stock Count : ', stock_count, 'balance: ', balance)
if idx == len(se_idx_list) - 1:
df_stock_val.loc[realIdx:, ['Balance', 'Asset', 'StockCount']] = \
balance, asset, stock_count
# print('end SELL')
else:
next_idx = idx + 1
for remain_idx in range(idx+1, len(se_idx_list)):
if se_trade.loc[se_idx_list[remain_idx]] == BUY:
next_idx = remain_idx
break
if remain_idx == len(se_idx_list) - 1:
df_stock_val.loc[realIdx:, ['Balance', 'Asset', 'StockCount']] = \
balance, asset, stock_count
else:
df_stock_val.loc[realIdx:se_idx_list[next_idx], ['Balance', 'Asset', 'StockCount']] = \
balance, asset, stock_count
# print('NOW SELL NEXT Trade IDX ', next_idx)
sellList.append([
df_stock_val.loc[realIdx].Date.strftime("%Y-%m-%d"),
df_stock_val.loc[realIdx].AdjClose
])
beforeIdx = realIdx
print(df_stock_val[['Date', 'Open', 'High', 'Low','AdjClose']].head(3))
print(df_stock_val[['Date', 'Open', 'High', 'Low','AdjClose']].tail(3))
# for i in df_stock_val['Asset'].iteritems():
# print(i)
return buyList, sellList, df_stock_val['Balance'], df_stock_val['Asset'], df_stock_val['StockCount']
def getInvestPeriod(startDate, EndDate):
r = relativedelta.relativedelta(EndDate, startDate)
if r.years:
period_str = '%d년 %d개월 %d일' % (r.years, r.months, r.days)
elif r.months:
period_str = '%d개월 %d일' % (r.months, r.days)
elif r.days:
period_str = '%d일' % (r.days)
return period_str
def main(stockCode, techAnalCode, balance, start, end):
# 네이버에서 주가를 가져옴
df_stock_val = getStockValueFromNaverWithDate(stockCode, start, end)
if len(df_stock_val) == 0:
return
# 기술적 분석에 따른 트레이드 포지션을 잡는 코드
df_stock_val, base_line = getTradePointFromMomentum(techAnalCode, df_stock_val)
# 백테스팅 진행
doTrading(df_stock_val, balance)
org_asset = df_stock_val.iloc[0].Asset
last_asset = df_stock_val.iloc[-1].Asset
added_asset = last_asset - org_asset
final_yield = 100 * (added_asset / org_asset)
str_invest_period = getInvestPeriod(df_stock_val.iloc[0].Date, df_stock_val.iloc[-1].Date)
print('++++++++++결과+++++++++++++')
print('초기 자산 : ', org_asset)
print('마지막 자산 : ', last_asset)
print('증가된 자산 : ', added_asset)
print('수익률 : ', final_yield, '%')
print('투자일시 : ', df_stock_val.iloc[0].Date, '~', df_stock_val.iloc[-1].Date)
print('투자기간 : ', str_invest_period)
if __name__ == '__main__':
main('005930', MACD, 1000000, '20121001', '20171117')
#print(getStockValueFromNaverWithDate('005930', '20011001', '20021101'))