-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscam_email.py
61 lines (47 loc) · 1.33 KB
/
scam_email.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import pickle
import string
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
# Download necessary NLTK data
nltk.download('stopwords')
nltk.download('punkt')
# Initialize PorterStemmer
ps = PorterStemmer()
# Function to transform text
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
# Load TF-IDF vectorizer and model
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
# Streamlit app title and input
st.title('Email/SMS Classifier')
input_sms = st.text_input('Enter your message')
if st.button('Predict'):
# Preprocessing
transformed_sms = transform_text(input_sms)
# Vectorization
vector_input = tfidf.transform([transformed_sms])
# Prediction
result = model.predict(vector_input)[0]
# Display result
if result == 1:
st.header('Spam')
else:
st.header('Not Spam')