-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathpredict.py
146 lines (112 loc) · 5.62 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import json
import h5py
import os
import numpy as np
import codecs
from datasets.dataset_generator import DatasetGenerator, DatasetIterator
from utils.core_utils import setup_gpu, load_model
from utils.hparams import HParams
from utils import generic_utils as utils
from preprocessing import audio, text
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluating an ASR system.')
parser.add_argument('--model', required=True, type=str)
parser.add_argument('--dataset', default=None, type=str)
parser.add_argument('--file', default=None, type=str)
parser.add_argument('--subset', type=str, default='test')
# Features generation (if necessary)
parser.add_argument('--input_parser', type=str, default=None)
parser.add_argument('--input_parser_params', nargs='+', default=[])
# Label generation (if necessary)
parser.add_argument('--label_parser', type=str,
default='simple_char_parser')
parser.add_argument('--label_parser_params', nargs='+', default=[])
parser.add_argument('--no_decoder', action='store_true', default=False)
# Other configs
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--allow_growth', default=False, action='store_true')
parser.add_argument('--save', default=None, type=str)
parser.add_argument('--override', default=False, action='store_true')
args = parser.parse_args()
args_nondefault = utils.parse_nondefault_args(
args, parser.parse_args(
['--model', args.model, '--dataset', args.dataset]))
if args.dataset is None and args.file is None:
raise ValueError('dataset or file args must be set.')
if args.dataset and args.file:
print('Both dataset and file args was set. Ignoring file args.')
# GPU configuration
setup_gpu(args.gpu, args.allow_growth)
# Loading model
model, meta = load_model(args.model, return_meta=True,
mode='predict', decoder=(not args.no_decoder))
args = HParams(**meta['training_args']).update(vars(args_nondefault))
# Features extractor
input_parser = utils.get_from_module('preprocessing.audio',
args.input_parser,
params=args.input_parser_params)
# Recovering text parser
label_parser = utils.get_from_module('preprocessing.text',
args.label_parser,
params=args.label_parser_params)
if args.dataset is not None:
data_gen = DatasetGenerator(input_parser, label_parser,
batch_size=1, seed=0, mode='predict',
shuffle=False)
test_flow = data_gen.flow_from_fname(args.dataset,
datasets=args.subset)
else:
test_flow = DatasetIterator(np.array([args.file]), None,
input_parser=input_parser,
label_parser=label_parser, mode='predict',
shuffle=False)
test_flow.labels = np.array([u''])
results = []
for index in range(test_flow.len):
prediction = model.predict(test_flow.next())
if not args.no_decoder:
prediction = label_parser.imap(prediction[0])
results.append({'input': test_flow.inputs[0].tolist(), 'label': test_flow.labels[0], 'best': prediction.tolist()})
print('Ground Truth: %s' % (label_parser._sanitize(test_flow.labels[0])))
print(' Predicted: %s\n\n' % prediction)
if args.save is not None:
if os.path.exists(args.save):
if not args.override:
raise IOError('Unable to create file')
os.remove(args.save)
if args.no_decoder:
with h5py.File(args.save) as f:
predictions = f.create_dataset(
'predictions', (0,), maxshape=(None,),
dtype=h5py.special_dtype(vlen=np.dtype('float32')))
predictions.attrs['num_labels'] = results[0]['prediction'].shape[-1]
labels = f.create_dataset(
'labels', (0,), maxshape=(None,),
dtype=h5py.special_dtype(vlen=unicode))
inputs = f.create_dataset(
'inputs', (0,), maxshape=(None,),
dtype=h5py.special_dtype(vlen=unicode))
for index, result in enumerate(results):
label = result['label']
prediction = result['prediction']
input_ = result['input']
inputs.resize(inputs.shape[0] + 1, axis=0)
inputs[inputs.shape[0] - 1] = input_
labels.resize(labels.shape[0] + 1, axis=0)
labels[labels.shape[0] - 1] = label.encode('utf8')
predictions.resize(predictions.shape[0] + 1, axis=0)
predictions[predictions.shape[0] - 1] = prediction.flatten().astype('float32')
# Flush to disk only when it reaches 128 samples
if index % 128 == 0:
print('%d/%d done.' % (index, len(results)))
f.flush()
f.flush()
print('%d/%d done.' % (len(results), len(results)))
else:
raise ValueError('save param must be set if no_decoder is Truepython')
else:
with codecs.open(args.save, 'w', encoding='utf8') as f:
json.dump(results, f)
from keras import backend as K
K.clear_session()