# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Rotation around the Y axis.""" import math from math import pi from typing import Optional, Union import numpy from qiskit.circuit.controlledgate import ControlledGate from qiskit.circuit.gate import Gate from qiskit.circuit.quantumregister import QuantumRegister from qiskit.circuit.parameterexpression import ParameterValueType class RYGate(Gate): r"""Single-qubit rotation about the Y axis. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.ry` method. **Circuit symbol:** .. parsed-literal:: ┌───────┐ q_0: ┤ Ry(ϴ) ├ └───────┘ **Matrix Representation:** .. math:: \newcommand{\rotationangle}{\frac{\theta}{2}} RY(\theta) = \exp\left(-i \rotationangle Y\right) = \begin{pmatrix} \cos\left(\rotationangle\right) & -\sin\left(\rotationangle\right) \\ \sin\left(\rotationangle\right) & \cos\left(\rotationangle\right) \end{pmatrix} """ def __init__( self, theta: ParameterValueType, label: Optional[str] = None, *, duration=None, unit="dt" ): """Create new RY gate.""" super().__init__("ry", 1, [theta], label=label, duration=duration, unit=unit) def _define(self): """ gate ry(theta) a { r(theta, pi/2) a; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .r import RGate q = QuantumRegister(1, "q") qc = QuantumCircuit(q, name=self.name) rules = [(RGate(self.params[0], pi / 2), [q[0]], [])] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc def control( self, num_ctrl_qubits: int = 1, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, annotated: bool = False, ): """Return a (multi-)controlled-RY gate. Args: num_ctrl_qubits: number of control qubits. label: An optional label for the gate [Default: ``None``] ctrl_state: control state expressed as integer, string (e.g.``'110'``), or ``None``. If ``None``, use all 1s. annotated: indicates whether the controlled gate can be implemented as an annotated gate. Returns: ControlledGate: controlled version of this gate. """ if not annotated and num_ctrl_qubits == 1: gate = CRYGate(self.params[0], label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label else: gate = super().control( num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state, annotated=annotated, ) return gate def inverse(self, annotated: bool = False): r"""Return inverse RY gate. :math:`RY(\lambda)^{\dagger} = RY(-\lambda)` Args: annotated: when set to ``True``, this is typically used to return an :class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete :class:`.Gate`. However, for this class this argument is ignored as the inverse of this gate is always a :class:`.RYGate` with an inverted parameter value. Returns: RYGate: inverse gate. """ return RYGate(-self.params[0]) def __array__(self, dtype=None, copy=None): """Return a numpy.array for the RY gate.""" if copy is False: raise ValueError("unable to avoid copy while creating an array as requested") cos = math.cos(self.params[0] / 2) sin = math.sin(self.params[0] / 2) return numpy.array([[cos, -sin], [sin, cos]], dtype=dtype) def power(self, exponent: float, annotated: bool = False): (theta,) = self.params return RYGate(exponent * theta) def __eq__(self, other): if isinstance(other, RYGate): return self._compare_parameters(other) return False class CRYGate(ControlledGate): r"""Controlled-RY gate. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.cry` method. **Circuit symbol:** .. parsed-literal:: q_0: ────■──── ┌───┴───┐ q_1: ┤ Ry(ϴ) ├ └───────┘ **Matrix representation:** .. math:: \newcommand{\rotationangle}{\frac{\theta}{2}} CRY(\theta)\ q_0, q_1 = I \otimes |0\rangle\langle 0| + RY(\theta) \otimes |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\left(\rotationangle\right) & 0 & -\sin\left(\rotationangle\right) \\ 0 & 0 & 1 & 0 \\ 0 & \sin\left(\rotationangle\right) & 0 & \cos\left(\rotationangle\right) \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───────┐ q_0: ┤ Ry(ϴ) ├ └───┬───┘ q_1: ────■──── .. math:: \newcommand{\rotationangle}{\frac{\theta}{2}} CRY(\theta)\ q_1, q_0 = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes RY(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\left(\rotationangle\right) & -\sin\left(\rotationangle\right) \\ 0 & 0 & \sin\left(\rotationangle\right) & \cos\left(\rotationangle\right) \end{pmatrix} """ def __init__( self, theta: ParameterValueType, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, *, duration=None, unit="dt", _base_label=None, ): """Create new CRY gate.""" super().__init__( "cry", 2, [theta], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=RYGate(theta, label=_base_label), duration=duration, unit=unit, ) def _define(self): """ gate cry(lambda) a,b { u3(lambda/2,0,0) b; cx a,b; u3(-lambda/2,0,0) b; cx a,b; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .x import CXGate # q_0: ─────────────■───────────────■── # ┌─────────┐┌─┴─┐┌─────────┐┌─┴─┐ # q_1: ┤ Ry(λ/2) ├┤ X ├┤ Ry(λ/2) ├┤ X ├ # └─────────┘└───┘└─────────┘└───┘ q = QuantumRegister(2, "q") qc = QuantumCircuit(q, name=self.name) rules = [ (RYGate(self.params[0] / 2), [q[1]], []), (CXGate(), [q[0], q[1]], []), (RYGate(-self.params[0] / 2), [q[1]], []), (CXGate(), [q[0], q[1]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc def inverse(self, annotated: bool = False): """Return inverse CRY gate (i.e. with the negative rotation angle) Args: annotated: when set to ``True``, this is typically used to return an :class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete :class:`.Gate`. However, for this class this argument is ignored as the inverse of this gate is always a :class:`.CRYGate` with an inverted parameter value. Returns: CRYGate: inverse gate. .""" return CRYGate(-self.params[0], ctrl_state=self.ctrl_state) def __array__(self, dtype=None, copy=None): """Return a numpy.array for the CRY gate.""" if copy is False: raise ValueError("unable to avoid copy while creating an array as requested") half_theta = float(self.params[0]) / 2 cos = math.cos(half_theta) sin = math.sin(half_theta) if self.ctrl_state: return numpy.array( [[1, 0, 0, 0], [0, cos, 0, -sin], [0, 0, 1, 0], [0, sin, 0, cos]], dtype=dtype ) else: return numpy.array( [[cos, 0, -sin, 0], [0, 1, 0, 0], [sin, 0, cos, 0], [0, 0, 0, 1]], dtype=dtype ) def __eq__(self, other): if isinstance(other, CRYGate): return self._compare_parameters(other) and self.ctrl_state == other.ctrl_state return False