forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxilrd2wbsp.v
494 lines (431 loc) · 12.9 KB
/
axilrd2wbsp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axilrd2wbsp.v (AXI lite to wishbone slave, read channel)
//
// Project: Pipelined Wishbone to AXI converter
//
// Purpose: Bridge an AXI lite read channel pair to a single wishbone read
// channel.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2016-2019, Gisselquist Technology, LLC
//
// This file is part of the pipelined Wishbone to AXI converter project, a
// project that contains multiple bus bridging designs and formal bus property
// sets.
//
// The bus bridge designs and property sets are free RTL designs: you can
// redistribute them and/or modify any of them under the terms of the GNU
// Lesser General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// The bus bridge designs and property sets are distributed in the hope that
// they will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with these designs. (It's in the $(ROOT)/doc directory. Run make
// with no target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: LGPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/lgpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
module axilrd2wbsp(i_clk, i_axi_reset_n,
// AXI read address channel signals
o_axi_arready, i_axi_araddr, i_axi_arcache, i_axi_arprot, i_axi_arvalid,
// AXI read data channel signals
o_axi_rresp, o_axi_rvalid, o_axi_rdata, i_axi_rready,
// We'll share the clock and the reset
o_wb_cyc, o_wb_stb, o_wb_addr,
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err
`ifdef FORMAL
, f_first, f_mid, f_last
`endif
);
localparam C_AXI_DATA_WIDTH = 32;// Width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28; // AXI Address width
localparam AW = C_AXI_ADDR_WIDTH-2;// WB Address width
parameter LGFIFO = 3;
input wire i_clk; // Bus clock
input wire i_axi_reset_n; // Bus reset
// AXI read address channel signals
output reg o_axi_arready; // Read address ready
input wire [C_AXI_ADDR_WIDTH-1:0] i_axi_araddr; // Read address
input wire [3:0] i_axi_arcache; // Read Cache type
input wire [2:0] i_axi_arprot; // Read Protection type
input wire i_axi_arvalid; // Read address valid
// AXI read data channel signals
output reg [1:0] o_axi_rresp; // Read response
output reg o_axi_rvalid; // Read reponse valid
output wire [C_AXI_DATA_WIDTH-1:0] o_axi_rdata; // Read data
input wire i_axi_rready; // Read Response ready
// We'll share the clock and the reset
output reg o_wb_cyc;
output reg o_wb_stb;
output reg [(AW-1):0] o_wb_addr;
input wire i_wb_ack;
input wire i_wb_stall;
input [(C_AXI_DATA_WIDTH-1):0] i_wb_data;
input wire i_wb_err;
`ifdef FORMAL
// Output connections only used in formal mode
output wire [LGFIFO:0] f_first;
output wire [LGFIFO:0] f_mid;
output wire [LGFIFO:0] f_last;
`endif
localparam DW = C_AXI_DATA_WIDTH;
localparam AXI_LSBS = $clog2(C_AXI_DATA_WIDTH)-3;
wire w_reset;
assign w_reset = (!i_axi_reset_n);
reg r_stb;
reg [AW-1:0] r_addr;
localparam FLEN=(1<<LGFIFO);
reg [DW-1:0] dfifo [0:(FLEN-1)];
reg fifo_full;
reg [LGFIFO:0] r_first, r_mid, r_last;
wire [LGFIFO:0] next_first, next_last;
reg wb_pending;
reg [LGFIFO:0] wb_outstanding;
wire [DW-1:0] read_data;
reg err_state;
reg [LGFIFO:0] err_loc;
initial o_wb_cyc = 1'b0;
initial o_wb_stb = 1'b0;
always @(posedge i_clk)
if ((w_reset)||((o_wb_cyc)&&(i_wb_err))||(err_state))
o_wb_stb <= 1'b0;
else if (r_stb || ((i_axi_arvalid)&&(o_axi_arready)))
o_wb_stb <= 1'b1;
else if ((o_wb_cyc)&&(!i_wb_stall))
o_wb_stb <= 1'b0;
always @(*)
o_wb_cyc = (wb_pending)||(o_wb_stb);
always @(posedge i_clk)
if (r_stb && !i_wb_stall)
o_wb_addr <= r_addr;
else if ((o_axi_arready)&&((!o_wb_stb)||(!i_wb_stall)))
o_wb_addr <= i_axi_araddr[AW+1:AXI_LSBS];
// Shadow request
// r_stb, r_addr
initial r_stb = 1'b0;
always @(posedge i_clk)
begin
if ((i_axi_arvalid)&&(o_axi_arready)&&(o_wb_stb)&&(i_wb_stall))
begin
r_stb <= 1'b1;
r_addr <= i_axi_araddr[AW+1:AXI_LSBS];
end else if ((!i_wb_stall)||(!o_wb_cyc))
r_stb <= 1'b0;
if ((w_reset)||(o_wb_cyc)&&(i_wb_err)||(err_state))
r_stb <= 1'b0;
end
initial wb_pending = 0;
initial wb_outstanding = 0;
always @(posedge i_clk)
if ((w_reset)||(!o_wb_cyc)||(i_wb_err)||(err_state))
begin
wb_pending <= 1'b0;
wb_outstanding <= 0;
end else case({ (o_wb_stb)&&(!i_wb_stall), i_wb_ack })
2'b01: begin
wb_outstanding <= wb_outstanding - 1'b1;
wb_pending <= (wb_outstanding >= 2);
end
2'b10: begin
wb_outstanding <= wb_outstanding + 1'b1;
wb_pending <= 1'b1;
end
default: begin end
endcase
assign next_first = r_first + 1'b1;
assign next_last = r_last + 1'b1;
initial fifo_full = 1'b0;
always @(posedge i_clk)
if (w_reset)
begin
fifo_full <= 1'b0;
end else case({ (o_axi_rvalid)&&(i_axi_rready),
(i_axi_arvalid)&&(o_axi_arready) })
2'b01: fifo_full <= (next_first[LGFIFO-1:0] == r_last[LGFIFO-1:0])
&&(next_first[LGFIFO]!=r_last[LGFIFO]);
2'b10: fifo_full <= 1'b0;
default: begin end
endcase
initial o_axi_arready = 1'b1;
always @(posedge i_clk)
if (w_reset)
o_axi_arready <= 1'b1;
else if ((o_wb_cyc && i_wb_err) || err_state)
// On any error, drop the ready flag until it's been flushed
o_axi_arready <= 1'b0;
else if ((i_axi_arvalid)&&(o_axi_arready)&&(o_wb_stb)&&(i_wb_stall))
// On any request where we are already busy, r_stb will get
// set and we drop arready
o_axi_arready <= 1'b0;
else if (!o_axi_arready && o_wb_stb && i_wb_stall)
// If we've already stalled on o_wb_stb, remain stalled until
// the bus clears
o_axi_arready <= 1'b0;
else if (fifo_full && (!o_axi_rvalid || !i_axi_rready))
// If the FIFO is full, we must remain not ready until at
// least one acknowledgment is accepted
o_axi_arready <= 1'b0;
else if ( (!o_axi_rvalid || !i_axi_rready)
&& (i_axi_arvalid && o_axi_arready))
o_axi_arready <= (next_first[LGFIFO-1:0] != r_last[LGFIFO-1:0])
||(next_first[LGFIFO]==r_last[LGFIFO]);
else
o_axi_arready <= 1'b1;
initial r_first = 0;
always @(posedge i_clk)
if (w_reset)
r_first <= 0;
else if ((i_axi_arvalid)&&(o_axi_arready))
r_first <= r_first + 1'b1;
initial r_mid = 0;
always @(posedge i_clk)
if (w_reset)
r_mid <= 0;
else if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
r_mid <= r_mid + 1'b1;
else if ((err_state)&&(r_mid != r_first))
r_mid <= r_mid + 1'b1;
initial r_last = 0;
always @(posedge i_clk)
if (w_reset)
r_last <= 0;
else if ((o_axi_rvalid)&&(i_axi_rready))
r_last <= r_last + 1'b1;
always @(posedge i_clk)
if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
dfifo[r_mid[(LGFIFO-1):0]] <= i_wb_data;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_err))
err_loc <= r_mid;
assign read_data = dfifo[r_last[LGFIFO-1:0]];
assign o_axi_rdata = read_data[DW-1:0];
initial o_axi_rresp = 2'b00;
always @(posedge i_clk)
if (w_reset)
o_axi_rresp <= 0;
else if ((!o_axi_rvalid)||(i_axi_rready))
begin
if ((!err_state)&&((!o_wb_cyc)||(!i_wb_err)))
o_axi_rresp <= 2'b00;
else if ((!err_state)&&(o_wb_cyc)&&(i_wb_err))
begin
if (o_axi_rvalid)
o_axi_rresp <= (r_mid == next_last) ? 2'b10 : 2'b00;
else
o_axi_rresp <= (r_mid == r_last) ? 2'b10 : 2'b00;
end else if (err_state)
begin
if (next_last == err_loc)
o_axi_rresp <= 2'b10;
else if (o_axi_rresp[1])
o_axi_rresp <= 2'b11;
end else
o_axi_rresp <= 0;
end
initial err_state = 0;
always @(posedge i_clk)
if (w_reset)
err_state <= 0;
else if (r_first == r_last)
err_state <= 0;
else if ((o_wb_cyc)&&(i_wb_err))
err_state <= 1'b1;
initial o_axi_rvalid = 1'b0;
always @(posedge i_clk)
if (w_reset)
o_axi_rvalid <= 0;
else if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
o_axi_rvalid <= 1'b1;
else if ((o_axi_rvalid)&&(i_axi_rready))
begin
if (err_state)
o_axi_rvalid <= (next_last != r_first);
else
o_axi_rvalid <= (next_last != r_mid);
end
// Make Verilator happy
// verilator lint_off UNUSED
wire [8:0] unused;
assign unused = { i_axi_arcache, i_axi_arprot, i_axi_araddr[AXI_LSBS-1:0] };
// verilator lint_on UNUSED
`ifdef FORMAL
reg f_past_valid;
reg f_fifo_empty;
reg [LGFIFO:0] f_fifo_fill;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
always @(*)
begin
f_fifo_fill = (r_first - r_last);
f_fifo_empty = (f_fifo_fill == 0);
end
always @(*)
if (!f_past_valid)
assume(w_reset);
always @(*)
if (err_state)
assert(!o_axi_arready);
always @(*)
if (err_state)
assert((!o_wb_cyc)&&(!o_axi_arready));
always @(*)
if ((f_fifo_empty)&&(!w_reset))
assert((!fifo_full)&&(r_first == r_last)&&(r_mid == r_last));
always @(*)
if (fifo_full)
assert((!f_fifo_empty)
&&(r_first[LGFIFO-1:0] == r_last[LGFIFO-1:0])
&&(r_first[LGFIFO] != r_last[LGFIFO]));
always @(*)
assert(f_fifo_fill <= (1<<LGFIFO));
always @(*)
if (fifo_full)
assert(!o_axi_arready);
always @(*)
assert(fifo_full == (f_fifo_fill == (1<<LGFIFO)));
always @(*)
if (f_fifo_fill == (1<<LGFIFO))
assert(!o_axi_arready);
always @(*)
assert(wb_pending == (wb_outstanding != 0));
assign f_first = r_first;
assign f_mid = r_mid;
assign f_last = r_last;
wire [LGFIFO:0] f_wb_nreqs, f_wb_nacks, f_wb_outstanding;
fwb_master #(
.AW(AW), .DW(DW), .F_LGDEPTH(LGFIFO+1)
) fwb(i_clk, w_reset,
o_wb_cyc, o_wb_stb, 1'b0, o_wb_addr, 32'h0, 4'h0,
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
f_wb_nreqs,f_wb_nacks, f_wb_outstanding);
always @(*)
if (o_wb_cyc)
assert(f_wb_outstanding == wb_outstanding);
always @(*)
if (o_wb_cyc)
assert(wb_outstanding <= (1<<LGFIFO));
wire [LGFIFO:0] wb_fill;
assign wb_fill = r_first - r_mid;
always @(*)
assert(wb_fill <= f_fifo_fill);
always @(*)
if (o_wb_stb)
assert(wb_outstanding+1+((r_stb)?1:0) == wb_fill);
else if (o_wb_cyc)
assert(wb_outstanding == wb_fill);
always @(*)
if (r_stb)
begin
assert(o_wb_stb);
assert(!o_axi_arready);
end
wire [LGFIFO:0] f_axi_rd_outstanding,
f_axi_wr_outstanding,
f_axi_awr_outstanding;
faxil_slave #(
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.F_LGDEPTH(LGFIFO+1),
.F_OPT_READ_ONLY(1'b1),
.F_AXI_MAXWAIT(0),
.F_AXI_MAXDELAY(0)
) faxil(i_clk, i_axi_reset_n,
//
// AXI write address channel signals
1'b0, i_axi_araddr, i_axi_arcache, i_axi_arprot, 1'b0,
// AXI write data channel signals
1'b0, 32'h0, 4'h0, 1'b0,
// AXI write response channel signals
2'b00, 1'b0, 1'b0,
// AXI read address channel signals
o_axi_arready, i_axi_araddr, i_axi_arcache, i_axi_arprot,
i_axi_arvalid,
// AXI read data channel signals
o_axi_rresp, o_axi_rvalid, o_axi_rdata, i_axi_rready,
f_axi_rd_outstanding, f_axi_wr_outstanding,
f_axi_awr_outstanding);
always @(*)
assert(f_axi_wr_outstanding == 0);
always @(*)
assert(f_axi_awr_outstanding == 0);
always @(*)
assert(f_axi_rd_outstanding == f_fifo_fill);
wire [LGFIFO:0] f_mid_minus_err, f_err_minus_last,
f_first_minus_err;
assign f_mid_minus_err = f_mid - err_loc;
assign f_err_minus_last = err_loc - f_last;
assign f_first_minus_err = f_first - err_loc;
always @(*)
if (o_axi_rvalid)
begin
if (!err_state)
assert(!o_axi_rresp[1]);
else if (err_loc == f_last)
assert(o_axi_rresp == 2'b10);
else if (f_err_minus_last < (1<<LGFIFO))
assert(!o_axi_rresp[1]);
else
assert(o_axi_rresp[1]);
end
always @(*)
if (err_state)
assert(o_axi_rvalid == (r_first != r_last));
else
assert(o_axi_rvalid == (r_mid != r_last));
always @(*)
if (err_state)
assert(f_first_minus_err <= (1<<LGFIFO));
always @(*)
if (err_state)
assert(f_first_minus_err != 0);
always @(*)
if (err_state)
assert(f_mid_minus_err <= f_first_minus_err);
always @(*)
if ((f_past_valid)&&(i_axi_reset_n)&&(f_axi_rd_outstanding > 0))
begin
if (err_state)
assert((!o_wb_cyc)&&(f_wb_outstanding == 0));
else if (!o_wb_cyc)
assert((o_axi_rvalid)&&(f_axi_rd_outstanding>0)
&&(wb_fill == 0));
end
// WB covers
always @(*)
cover(o_wb_cyc && o_wb_stb);
always @(*)
if (LGFIFO > 2)
cover(o_wb_cyc && f_wb_outstanding > 2);
always @(posedge i_clk)
cover(o_wb_cyc && i_wb_ack
&& $past(o_wb_cyc && i_wb_ack)
&& $past(o_wb_cyc && i_wb_ack,2));
// AXI covers
always @(*)
cover(o_axi_rvalid && i_axi_rready);
always @(posedge i_clk)
cover(i_axi_arvalid && o_axi_arready
&& $past(i_axi_arvalid && o_axi_arready)
&& $past(i_axi_arvalid && o_axi_arready,2));
always @(posedge i_clk)
cover(o_axi_rvalid && i_axi_rready
&& $past(o_axi_rvalid && i_axi_rready)
&& $past(o_axi_rvalid && i_axi_rready,2));
`endif
endmodule