-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing.py
56 lines (46 loc) · 1.72 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
from datetime import datetime, timedelta
import streamlit as st
def get_date_inputs(start_date_default, end_date_default):
"""
Gets date inputs from the sidebar in the streamlit application.
Parameters:
start_date_default (datetime): The default start date.
end_date_default (datetime): The default end date.
Returns:
tuple: The selected start and end dates.
"""
start_date = st.sidebar.date_input("Start Date", start_date_default)
end_date = st.sidebar.date_input("End Date", end_date_default)
return start_date, end_date
def fetch_data(url):
"""
Fetches data from the URL and returns a processed DataFrame.
Parameters:
url (str): The URL from which to fetch the data.
Returns:
pd.DataFrame: The processed data as a pandas DataFrame, or None if no tables are found.
"""
tables = pd.read_html(url, header=0, skiprows=5)
if tables:
df = process_data(tables[0])
return df
def process_data(df):
"""
Processes the DataFrame and returns the modified version.
Parameters:
df (pd.DataFrame): The original data as a pandas DataFrame.
Returns:
pd.DataFrame: The processed data as a pandas DataFrame.
"""
df = df.iloc[:, :3]
df.columns = ["DATE", "SALE", "BUY"]
df["SALE"] = df["SALE"] / 100000
df["BUY"] = df["BUY"] / 100000
df["SALE"] = df["SALE"].astype(str).str.replace(',', '.').astype(float) / 1000
df["BUY"] = df["BUY"].astype(str).str.replace(',', '.').astype(float) / 1000
df["LOW"] = df["SALE"].shift(-1)
df["CLOSE"] = df["SALE"].shift(-1)
df.at[df.index[-1], "LOW"] = df.at[df.index[-1], "SALE"]
df.at[df.index[-1], "CLOSE"] = df.at[df.index[-1], "SALE"]
return df