-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRandomForestImageClassifier.java
70 lines (56 loc) · 2.22 KB
/
RandomForestImageClassifier.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import java.io.File;
import java.util.ArrayList;
import java.util.Enumeration;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.trees.RandomForest;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.SerializationHelper;
import weka.core.converters.ArffLoader;
import weka.core.converters.CSVSaver;
import weka.core.converters.Loader;
public class RandomForestImageClassifier
{
public static void main(String[] args) throws Exception
{
Classifier classifier = (Classifier) SerializationHelper.read("classifier500.model");
ArffLoader testLoader = new ArffLoader();
testLoader.setSource(new File("test.arff"));
testLoader.setRetrieval(Loader.BATCH);
Instances testDataSet = testLoader.getDataSet();
Attribute testAttribute = testDataSet.attribute("class");
testDataSet.setClass(testAttribute);
int correct = 0;
int incorrect = 0;
FastVector attInfo = new FastVector();
attInfo.addElement(new Attribute("Id"));
attInfo.addElement(new Attribute("Category"));
Instances outputInstances = new Instances("predict",attInfo,testDataSet.numInstances());
Enumeration testInstances = testDataSet.enumerateInstances();
int index = 1;
while (testInstances.hasMoreElements()) {
Instance instance = (Instance) testInstances.nextElement();
double classification = classifier.classifyInstance(instance);
/*if (((int)instance.classValue()-(int)classification) == 0)
correct++;
else
incorrect++;*/
Instance predictInstance = new Instance(outputInstances.numAttributes());
predictInstance.setValue(0, index++);
predictInstance.setValue(1, (int)classification + 1);
outputInstances.add(predictInstance);
}
System.out.println("Correct Instance: "+correct);
System.out.println("IncCorrect Instance: "+incorrect);
double accuracy = (double)(correct)/(double)(correct+incorrect);
System.out.println("Accuracy: "+accuracy);
CSVSaver predictedCsvSaver = new CSVSaver();
predictedCsvSaver.setFile(new File("predict.csv"));
predictedCsvSaver.setInstances(outputInstances);
predictedCsvSaver.writeBatch();
System.out.println("Prediciton saved to predict.csv");
}
}