forked from Qiskit/qiskit-ibm-provider
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuits.py
1315 lines (1210 loc) · 50.3 KB
/
circuits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=invalid-name
"""Binary IO for circuit objects."""
import io
import json
import struct
import uuid
import warnings
from collections import defaultdict
import numpy as np
from qiskit import circuit as circuit_mod
from qiskit.circuit import library, controlflow, CircuitInstruction, ControlFlowOp
from qiskit.circuit.classical import expr
from qiskit.circuit.classicalregister import ClassicalRegister, Clbit
from qiskit.circuit.gate import Gate
from qiskit.circuit.singleton import SingletonInstruction, SingletonGate
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.quantumregister import QuantumRegister, Qubit
from qiskit.quantum_info.operators import SparsePauliOp
from qiskit.synthesis import evolution as evo_synth
from qiskit.transpiler.layout import Layout, TranspileLayout
from .. import common, formats, type_keys
from . import value, schedules
def _read_header_v2( # type: ignore[no-untyped-def]
file_obj, version, vectors, metadata_deserializer=None
):
data = formats.CIRCUIT_HEADER_V2._make(
struct.unpack(
formats.CIRCUIT_HEADER_V2_PACK,
file_obj.read(formats.CIRCUIT_HEADER_V2_SIZE),
)
)
name = file_obj.read(data.name_size).decode(common.ENCODE)
global_phase = value.loads_value(
data.global_phase_type,
file_obj.read(data.global_phase_size),
version=version,
vectors=vectors,
)
header = {
"global_phase": global_phase,
"num_qubits": data.num_qubits,
"num_clbits": data.num_clbits,
"num_registers": data.num_registers,
"num_instructions": data.num_instructions,
}
metadata_raw = file_obj.read(data.metadata_size)
metadata = json.loads(metadata_raw, cls=metadata_deserializer)
return header, name, metadata
def _read_header(file_obj, metadata_deserializer=None): # type: ignore[no-untyped-def]
data = formats.CIRCUIT_HEADER._make(
struct.unpack(
formats.CIRCUIT_HEADER_PACK, file_obj.read(formats.CIRCUIT_HEADER_SIZE)
)
)
name = file_obj.read(data.name_size).decode(common.ENCODE)
header = {
"global_phase": data.global_phase,
"num_qubits": data.num_qubits,
"num_clbits": data.num_clbits,
"num_registers": data.num_registers,
"num_instructions": data.num_instructions,
}
metadata_raw = file_obj.read(data.metadata_size)
metadata = json.loads(metadata_raw, cls=metadata_deserializer)
return header, name, metadata
def _read_registers_v4(file_obj, num_registers): # type: ignore[no-untyped-def]
registers = {"q": {}, "c": {}}
for _reg in range(num_registers):
data = formats.REGISTER_V4._make(
struct.unpack(
formats.REGISTER_V4_PACK,
file_obj.read(formats.REGISTER_V4_SIZE),
)
)
name = file_obj.read(data.name_size).decode("utf8")
REGISTER_ARRAY_PACK = "!%sq" % data.size
bit_indices_raw = file_obj.read(struct.calcsize(REGISTER_ARRAY_PACK))
bit_indices = list(struct.unpack(REGISTER_ARRAY_PACK, bit_indices_raw))
if data.type.decode("utf8") == "q":
registers["q"][name] = (data.standalone, bit_indices, data.in_circuit)
else:
registers["c"][name] = (data.standalone, bit_indices, data.in_circuit)
return registers
def _read_registers(file_obj, num_registers): # type: ignore[no-untyped-def]
registers = {"q": {}, "c": {}}
for _reg in range(num_registers):
data = formats.REGISTER._make(
struct.unpack(
formats.REGISTER_PACK,
file_obj.read(formats.REGISTER_SIZE),
)
)
name = file_obj.read(data.name_size).decode("utf8")
REGISTER_ARRAY_PACK = "!%sI" % data.size
bit_indices_raw = file_obj.read(struct.calcsize(REGISTER_ARRAY_PACK))
bit_indices = list(struct.unpack(REGISTER_ARRAY_PACK, bit_indices_raw))
if data.type.decode("utf8") == "q":
registers["q"][name] = (data.standalone, bit_indices, True)
else:
registers["c"][name] = (data.standalone, bit_indices, True)
return registers
def _loads_instruction_parameter( # type: ignore[no-untyped-def]
type_key, data_bytes, version, vectors, registers, circuit, use_symengine
):
if type_key == type_keys.Program.CIRCUIT:
param = common.data_from_binary(data_bytes, read_circuit, version=version)
elif type_key == type_keys.Container.RANGE:
data = formats.RANGE._make(struct.unpack(formats.RANGE_PACK, data_bytes))
param = range(data.start, data.stop, data.step)
elif type_key == type_keys.Container.TUPLE:
param = tuple(
common.sequence_from_binary(
data_bytes,
_loads_instruction_parameter,
version=version,
vectors=vectors,
registers=registers,
circuit=circuit,
use_symengine=use_symengine,
)
)
elif type_key == type_keys.Value.INTEGER:
# TODO This uses little endian. Should be fixed in the next QPY version.
param = struct.unpack("<q", data_bytes)[0]
elif type_key == type_keys.Value.FLOAT:
# TODO This uses little endian. Should be fixed in the next QPY version.
param = struct.unpack("<d", data_bytes)[0]
elif type_key == type_keys.Value.REGISTER:
param = _loads_register_param(
data_bytes.decode(common.ENCODE), circuit, registers
)
else:
clbits = circuit.clbits if circuit is not None else ()
param = value.loads_value(
type_key,
data_bytes,
version,
vectors,
clbits=clbits,
cregs=registers["c"],
use_symengine=use_symengine,
)
return param
def _loads_register_param(data_bytes, circuit, registers): # type: ignore[no-untyped-def]
# If register name prefixed with null character it's a clbit index for single bit condition.
if data_bytes[0] == "\x00":
conditional_bit = int(data_bytes[1:])
return circuit.clbits[conditional_bit]
return registers["c"][data_bytes]
def _read_instruction( # type: ignore[no-untyped-def]
file_obj, circuit, registers, custom_operations, version, vectors, use_symengine
):
if version < 5:
instruction = formats.CIRCUIT_INSTRUCTION._make(
struct.unpack(
formats.CIRCUIT_INSTRUCTION_PACK,
file_obj.read(formats.CIRCUIT_INSTRUCTION_SIZE),
)
)
else:
instruction = formats.CIRCUIT_INSTRUCTION_V2._make(
struct.unpack(
formats.CIRCUIT_INSTRUCTION_V2_PACK,
file_obj.read(formats.CIRCUIT_INSTRUCTION_V2_SIZE),
)
)
gate_name = file_obj.read(instruction.name_size).decode(common.ENCODE)
label = file_obj.read(instruction.label_size).decode(common.ENCODE)
condition_register = file_obj.read(instruction.condition_register_size).decode(
common.ENCODE
)
qargs = []
cargs = []
params = []
condition = None
if (version < 5 and instruction.has_condition) or (
version >= 5 and instruction.conditional_key == type_keys.Condition.TWO_TUPLE
):
condition = (
_loads_register_param(condition_register, circuit, registers),
instruction.condition_value,
)
elif version >= 5 and instruction.conditional_key == type_keys.Condition.EXPRESSION:
condition = value.read_value(
file_obj,
version,
vectors,
clbits=circuit.clbits,
cregs=registers["c"],
use_symengine=use_symengine,
)
if circuit is not None:
qubit_indices = dict(enumerate(circuit.qubits))
clbit_indices = dict(enumerate(circuit.clbits))
else:
qubit_indices = {}
clbit_indices = {}
# Load Arguments
if circuit is not None:
for _qarg in range(instruction.num_qargs):
qarg = formats.CIRCUIT_INSTRUCTION_ARG._make(
struct.unpack(
formats.CIRCUIT_INSTRUCTION_ARG_PACK,
file_obj.read(formats.CIRCUIT_INSTRUCTION_ARG_SIZE),
)
)
if qarg.type.decode(common.ENCODE) == "c":
raise TypeError("Invalid input carg prior to all qargs")
qargs.append(qubit_indices[qarg.size])
for _carg in range(instruction.num_cargs):
carg = formats.CIRCUIT_INSTRUCTION_ARG._make(
struct.unpack(
formats.CIRCUIT_INSTRUCTION_ARG_PACK,
file_obj.read(formats.CIRCUIT_INSTRUCTION_ARG_SIZE),
)
)
if carg.type.decode(common.ENCODE) == "q":
raise TypeError("Invalid input qarg after all qargs")
cargs.append(clbit_indices[carg.size])
# Load Parameters
for _param in range(instruction.num_parameters):
type_key, data_bytes = common.read_generic_typed_data(file_obj)
param = _loads_instruction_parameter(
type_key,
data_bytes,
version,
vectors,
registers,
circuit,
use_symengine,
)
params.append(param)
# Load Gate object
if gate_name in {"Gate", "Instruction", "ControlledGate"}:
inst_obj = _parse_custom_operation(
custom_operations,
gate_name,
params,
version,
vectors,
registers,
use_symengine,
)
inst_obj.condition = condition
if instruction.label_size > 0:
inst_obj.label = label
if circuit is None:
return inst_obj
circuit._append(inst_obj, qargs, cargs)
return None
elif gate_name in custom_operations:
inst_obj = _parse_custom_operation(
custom_operations,
gate_name,
params,
version,
vectors,
registers,
use_symengine,
)
inst_obj.condition = condition
if instruction.label_size > 0:
inst_obj.label = label
if circuit is None:
return inst_obj
circuit._append(inst_obj, qargs, cargs)
return None
elif hasattr(library, gate_name):
gate_class = getattr(library, gate_name)
elif hasattr(circuit_mod, gate_name):
gate_class = getattr(circuit_mod, gate_name)
elif hasattr(controlflow, gate_name):
gate_class = getattr(controlflow, gate_name)
else:
raise AttributeError("Invalid instruction type: %s" % gate_name)
if instruction.label_size <= 0:
label = None
if gate_name in {"IfElseOp", "WhileLoopOp"}:
gate = gate_class(condition, *params, label=label)
elif version >= 5 and issubclass(gate_class, ControlledGate):
if gate_name in {
"MCPhaseGate",
"MCU1Gate",
"MCXGrayCode",
"MCXGate",
"MCXRecursive",
"MCXVChain",
}:
gate = gate_class(*params, instruction.num_ctrl_qubits, label=label)
else:
gate = gate_class(*params, label=label)
if (
gate.num_ctrl_qubits != instruction.num_ctrl_qubits
or gate.ctrl_state != instruction.ctrl_state
):
gate = gate.to_mutable()
gate.num_ctrl_qubits = instruction.num_ctrl_qubits
gate.ctrl_state = instruction.ctrl_state
if condition:
gate = gate.c_if(*condition)
else:
if gate_name in {"Initialize", "StatePreparation"}:
if isinstance(params[0], str):
# the params are the labels of the initial state
gate = gate_class("".join(label for label in params))
elif instruction.num_parameters == 1:
# the params is the integer indicating which qubits to initialize
gate = gate_class(int(params[0].real), instruction.num_qargs)
else:
# the params represent a list of complex amplitudes
gate = gate_class(params)
elif gate_name in {
"UCRXGate",
"UCRYGate",
"UCRZGate",
"DiagonalGate",
}:
gate = gate_class(params)
else:
if gate_name == "Barrier":
params = [len(qargs)]
elif gate_name in {"BreakLoopOp", "ContinueLoopOp"}:
params = [len(qargs), len(cargs)]
if label is not None:
if issubclass(gate_class, (SingletonInstruction, SingletonGate)):
gate = gate_class(*params, label=label)
else:
gate = gate_class(*params)
gate.label = label
else:
gate = gate_class(*params)
if condition:
if not isinstance(gate, ControlFlowOp):
gate = gate.c_if(*condition)
else:
gate.condition = condition
if circuit is None:
return gate
if not isinstance(gate, Instruction):
circuit.append(gate, qargs, cargs)
else:
circuit._append(CircuitInstruction(gate, qargs, cargs))
return None
def _parse_custom_operation( # type: ignore[no-untyped-def]
custom_operations, gate_name, params, version, vectors, registers, use_symengine
):
if version >= 5:
(
type_str,
num_qubits,
num_clbits,
definition,
num_ctrl_qubits,
ctrl_state,
base_gate_raw,
) = custom_operations[gate_name]
else:
type_str, num_qubits, num_clbits, definition = custom_operations[gate_name]
type_key = type_keys.CircuitInstruction(type_str)
if type_key == type_keys.CircuitInstruction.INSTRUCTION:
inst_obj = Instruction(gate_name, num_qubits, num_clbits, params)
if definition is not None:
inst_obj.definition = definition
return inst_obj
if type_key == type_keys.CircuitInstruction.GATE:
inst_obj = Gate(gate_name, num_qubits, params)
inst_obj.definition = definition
return inst_obj
if version >= 5 and type_key == type_keys.CircuitInstruction.CONTROLLED_GATE:
with io.BytesIO(base_gate_raw) as base_gate_obj:
base_gate = _read_instruction(
base_gate_obj,
None,
registers,
custom_operations,
version,
vectors,
use_symengine,
)
if ctrl_state < 2**num_ctrl_qubits - 1:
# If open controls, we need to discard the control suffix when setting the name.
gate_name = gate_name.rsplit("_", 1)[0]
inst_obj = ControlledGate(
gate_name,
num_qubits,
params,
num_ctrl_qubits=num_ctrl_qubits,
ctrl_state=ctrl_state,
base_gate=base_gate,
)
inst_obj.definition = definition
return inst_obj
if type_key == type_keys.CircuitInstruction.PAULI_EVOL_GATE:
return definition
raise ValueError("Invalid custom instruction type '%s'" % type_str)
def _read_pauli_evolution_gate(file_obj, version, vectors): # type: ignore[no-untyped-def]
pauli_evolution_def = formats.PAULI_EVOLUTION_DEF._make(
struct.unpack(
formats.PAULI_EVOLUTION_DEF_PACK,
file_obj.read(formats.PAULI_EVOLUTION_DEF_SIZE),
)
)
if pauli_evolution_def.operator_size != 1 and pauli_evolution_def.standalone_op:
raise ValueError(
"Can't have a standalone operator with {pauli_evolution_raw[0]} operators in the payload"
)
operator_list = []
for _ in range(pauli_evolution_def.operator_size):
op_elem = formats.SPARSE_PAULI_OP_LIST_ELEM._make(
struct.unpack(
formats.SPARSE_PAULI_OP_LIST_ELEM_PACK,
file_obj.read(formats.SPARSE_PAULI_OP_LIST_ELEM_SIZE),
)
)
op_raw_data = common.data_from_binary(file_obj.read(op_elem.size), np.load)
operator_list.append(SparsePauliOp.from_list(op_raw_data))
if pauli_evolution_def.standalone_op:
pauli_op = operator_list[0]
else:
pauli_op = operator_list
time = value.loads_value(
pauli_evolution_def.time_type,
file_obj.read(pauli_evolution_def.time_size),
version=version,
vectors=vectors,
)
synth_data = json.loads(file_obj.read(pauli_evolution_def.synth_method_size))
synthesis = getattr(evo_synth, synth_data["class"])(**synth_data["settings"])
return_gate = library.PauliEvolutionGate(pauli_op, time=time, synthesis=synthesis)
return return_gate
def _read_custom_operations(file_obj, version, vectors): # type: ignore[no-untyped-def]
custom_operations = {}
custom_definition_header = formats.CUSTOM_CIRCUIT_DEF_HEADER._make(
struct.unpack(
formats.CUSTOM_CIRCUIT_DEF_HEADER_PACK,
file_obj.read(formats.CUSTOM_CIRCUIT_DEF_HEADER_SIZE),
)
)
if custom_definition_header.size > 0:
for _ in range(custom_definition_header.size):
if version < 5:
data = formats.CUSTOM_CIRCUIT_INST_DEF._make(
struct.unpack(
formats.CUSTOM_CIRCUIT_INST_DEF_PACK,
file_obj.read(formats.CUSTOM_CIRCUIT_INST_DEF_SIZE),
)
)
else:
data = formats.CUSTOM_CIRCUIT_INST_DEF_V2._make(
struct.unpack(
formats.CUSTOM_CIRCUIT_INST_DEF_V2_PACK,
file_obj.read(formats.CUSTOM_CIRCUIT_INST_DEF_V2_SIZE),
)
)
name = file_obj.read(data.gate_name_size).decode(common.ENCODE)
type_str = data.type
definition_circuit = None
if data.custom_definition:
def_binary = file_obj.read(data.size)
if version < 3 or not name.startswith(r"###PauliEvolutionGate_"):
definition_circuit = common.data_from_binary(
def_binary, read_circuit, version=version
)
elif name.startswith(r"###PauliEvolutionGate_"):
definition_circuit = common.data_from_binary(
def_binary,
_read_pauli_evolution_gate,
version=version,
vectors=vectors,
)
if version < 5:
data_payload = (
type_str,
data.num_qubits,
data.num_clbits,
definition_circuit,
)
else:
base_gate = file_obj.read(data.base_gate_size)
data_payload = (
type_str,
data.num_qubits,
data.num_clbits,
definition_circuit,
data.num_ctrl_qubits,
data.ctrl_state,
base_gate,
)
custom_operations[name] = data_payload
return custom_operations
def _read_calibrations( # type: ignore[no-untyped-def]
file_obj, version, vectors, metadata_deserializer
):
calibrations = {}
header = formats.CALIBRATION._make(
struct.unpack(formats.CALIBRATION_PACK, file_obj.read(formats.CALIBRATION_SIZE))
)
for _ in range(header.num_cals):
defheader = formats.CALIBRATION_DEF._make(
struct.unpack(
formats.CALIBRATION_DEF_PACK,
file_obj.read(formats.CALIBRATION_DEF_SIZE),
)
)
name = file_obj.read(defheader.name_size).decode(common.ENCODE)
qubits = tuple(
struct.unpack("!q", file_obj.read(struct.calcsize("!q")))[0]
for _ in range(defheader.num_qubits)
)
params = tuple(
value.read_value(file_obj, version, vectors)
for _ in range(defheader.num_params)
)
schedule = schedules.read_schedule_block(
file_obj, version, metadata_deserializer
)
if name not in calibrations:
calibrations[name] = {(qubits, params): schedule}
else:
calibrations[name][(qubits, params)] = schedule
return calibrations
def _dumps_register(register, index_map): # type: ignore[no-untyped-def]
if isinstance(register, ClassicalRegister):
return register.name.encode(common.ENCODE)
# Clbit.
return b"\x00" + str(index_map["c"][register]).encode(common.ENCODE)
def _dumps_instruction_parameter(param, index_map, use_symengine): # type: ignore[no-untyped-def]
if isinstance(param, QuantumCircuit):
type_key = type_keys.Program.CIRCUIT
data_bytes = common.data_to_binary(param, write_circuit)
elif isinstance(param, range):
type_key = type_keys.Container.RANGE
data_bytes = struct.pack(
formats.RANGE_PACK, param.start, param.stop, param.step
)
elif isinstance(param, tuple):
type_key = type_keys.Container.TUPLE
data_bytes = common.sequence_to_binary(
param,
_dumps_instruction_parameter,
index_map=index_map,
use_symengine=use_symengine,
)
elif isinstance(param, int):
# TODO This uses little endian. This should be fixed in next QPY version.
type_key = type_keys.Value.INTEGER
data_bytes = struct.pack("<q", param)
elif isinstance(param, float):
# TODO This uses little endian. This should be fixed in next QPY version.
type_key = type_keys.Value.FLOAT
data_bytes = struct.pack("<d", param)
elif isinstance(param, (Clbit, ClassicalRegister)):
type_key = type_keys.Value.REGISTER
data_bytes = _dumps_register(param, index_map)
else:
type_key, data_bytes = value.dumps_value(
param, index_map=index_map, use_symengine=use_symengine
)
return type_key, data_bytes
# pylint: disable=too-many-boolean-expressions
def _write_instruction( # type: ignore[no-untyped-def]
file_obj, instruction, custom_operations, index_map, use_symengine
):
gate_class_name = instruction.operation.base_class.__name__
custom_operations_list = []
if (
(
not hasattr(library, gate_class_name)
and not hasattr(circuit_mod, gate_class_name)
and not hasattr(controlflow, gate_class_name)
)
or gate_class_name == "Gate"
or gate_class_name == "Instruction"
or isinstance(instruction.operation, library.BlueprintCircuit)
):
if instruction.operation.name not in custom_operations:
custom_operations[instruction.operation.name] = instruction.operation
custom_operations_list.append(instruction.operation.name)
gate_class_name = instruction.operation.name
# ucr*_dg gates can have different numbers of parameters,
# the uuid is appended to avoid storing a single definition
# in circuits with multiple ucr*_dg gates.
if instruction.operation.name in ["ucrx_dg", "ucry_dg", "ucrz_dg"]:
gate_class_name += "_" + str(uuid.uuid4())
if gate_class_name not in custom_operations:
custom_operations[gate_class_name] = instruction.operation
custom_operations_list.append(gate_class_name)
elif gate_class_name == "ControlledGate":
# controlled gates can have the same name but different parameter
# values, the uuid is appended to avoid storing a single definition
# in circuits with multiple controlled gates.
gate_class_name = instruction.operation.name + "_" + str(uuid.uuid4())
custom_operations[gate_class_name] = instruction.operation
custom_operations_list.append(gate_class_name)
elif isinstance(instruction.operation, library.PauliEvolutionGate):
gate_class_name = r"###PauliEvolutionGate_" + str(uuid.uuid4())
custom_operations[gate_class_name] = instruction.operation
custom_operations_list.append(gate_class_name)
condition_type = type_keys.Condition.NONE
condition_register = b""
condition_value = 0
if (op_condition := getattr(instruction.operation, "condition", None)) is not None:
if isinstance(op_condition, expr.Expr):
condition_type = type_keys.Condition.EXPRESSION
else:
condition_type = type_keys.Condition.TWO_TUPLE
condition_register = _dumps_register(
instruction.operation.condition[0], index_map
)
condition_value = int(instruction.operation.condition[1])
gate_class_name = gate_class_name.encode(common.ENCODE)
label = getattr(instruction.operation, "label")
if label:
label_raw = label.encode(common.ENCODE)
else:
label_raw = b""
# The instruction params we store are about being able to reconstruct the objects; they don't
# necessarily need to match one-to-one to the `params` field.
if isinstance(instruction.operation, controlflow.SwitchCaseOp):
instruction_params = [
instruction.operation.target,
tuple(instruction.operation.cases_specifier()),
]
else:
instruction_params = instruction.operation.params
num_ctrl_qubits = getattr(instruction.operation, "num_ctrl_qubits", 0)
ctrl_state = getattr(instruction.operation, "ctrl_state", 0)
instruction_raw = struct.pack(
formats.CIRCUIT_INSTRUCTION_V2_PACK,
len(gate_class_name),
len(label_raw),
len(instruction_params),
instruction.operation.num_qubits,
instruction.operation.num_clbits,
condition_type.value,
len(condition_register),
condition_value,
num_ctrl_qubits,
ctrl_state,
)
file_obj.write(instruction_raw)
file_obj.write(gate_class_name)
file_obj.write(label_raw)
if condition_type is type_keys.Condition.EXPRESSION:
value.write_value(file_obj, op_condition, index_map=index_map)
else:
file_obj.write(condition_register)
# Encode instruction args
for qbit in instruction.qubits:
instruction_arg_raw = struct.pack(
formats.CIRCUIT_INSTRUCTION_ARG_PACK, b"q", index_map["q"][qbit]
)
file_obj.write(instruction_arg_raw)
for clbit in instruction.clbits:
instruction_arg_raw = struct.pack(
formats.CIRCUIT_INSTRUCTION_ARG_PACK, b"c", index_map["c"][clbit]
)
file_obj.write(instruction_arg_raw)
# Encode instruction params
for param in instruction_params:
type_key, data_bytes = _dumps_instruction_parameter(
param, index_map, use_symengine
)
common.write_generic_typed_data(file_obj, type_key, data_bytes)
return custom_operations_list
def _write_pauli_evolution_gate(file_obj, evolution_gate): # type: ignore[no-untyped-def]
operator_list = evolution_gate.operator
standalone = False
if not isinstance(operator_list, list):
operator_list = [operator_list]
standalone = True
num_operators = len(operator_list)
def _write_elem(buffer, op): # type: ignore[no-untyped-def]
elem_data = common.data_to_binary(op.to_list(array=True), np.save)
elem_metadata = struct.pack(
formats.SPARSE_PAULI_OP_LIST_ELEM_PACK, len(elem_data)
)
buffer.write(elem_metadata)
buffer.write(elem_data)
pauli_data_buf = io.BytesIO()
for operator in operator_list:
data = common.data_to_binary(operator, _write_elem)
pauli_data_buf.write(data)
time_type, time_data = value.dumps_value(evolution_gate.time)
time_size = len(time_data)
synth_class = str(type(evolution_gate.synthesis).__name__)
settings_dict = evolution_gate.synthesis.settings
synth_data = json.dumps({"class": synth_class, "settings": settings_dict}).encode(
common.ENCODE
)
synth_size = len(synth_data)
pauli_evolution_raw = struct.pack(
formats.PAULI_EVOLUTION_DEF_PACK,
num_operators,
standalone,
time_type,
time_size,
synth_size,
)
file_obj.write(pauli_evolution_raw)
file_obj.write(pauli_data_buf.getvalue())
pauli_data_buf.close()
file_obj.write(time_data)
file_obj.write(synth_data)
def _write_custom_operation( # type: ignore[no-untyped-def]
file_obj, name, operation, custom_operations, use_symengine
):
type_key = type_keys.CircuitInstruction.assign(operation)
has_definition = False
size = 0
data = None
num_qubits = operation.num_qubits
num_clbits = operation.num_clbits
ctrl_state = 0
num_ctrl_qubits = 0
base_gate = None
new_custom_instruction = []
if type_key == type_keys.CircuitInstruction.PAULI_EVOL_GATE:
has_definition = True
data = common.data_to_binary(operation, _write_pauli_evolution_gate)
size = len(data)
elif type_key == type_keys.CircuitInstruction.CONTROLLED_GATE:
# For ControlledGate, we have to access and store the private `_definition` rather than the
# public one, because the public one is mutated to include additional logic if the control
# state is open, and the definition setter (during a subsequent read) uses the "fully
# excited" control definition only.
has_definition = True
# Build internal definition to support overloaded subclasses by
# calling definition getter on object
operation.definition # pylint: disable=pointless-statement
data = common.data_to_binary(operation._definition, write_circuit)
size = len(data)
num_ctrl_qubits = operation.num_ctrl_qubits
ctrl_state = operation.ctrl_state
base_gate = operation.base_gate
elif operation.definition is not None:
has_definition = True
data = common.data_to_binary(operation.definition, write_circuit)
size = len(data)
if base_gate is None:
base_gate_raw = b""
else:
with io.BytesIO() as base_gate_buffer:
new_custom_instruction = _write_instruction(
base_gate_buffer,
CircuitInstruction(base_gate, (), ()),
custom_operations,
{},
use_symengine,
)
base_gate_raw = base_gate_buffer.getvalue()
name_raw = name.encode(common.ENCODE)
custom_operation_raw = struct.pack(
formats.CUSTOM_CIRCUIT_INST_DEF_V2_PACK,
len(name_raw),
type_key,
num_qubits,
num_clbits,
has_definition,
size,
num_ctrl_qubits,
ctrl_state,
len(base_gate_raw),
)
file_obj.write(custom_operation_raw)
file_obj.write(name_raw)
if data:
file_obj.write(data)
file_obj.write(base_gate_raw)
return new_custom_instruction
def _write_calibrations(file_obj, calibrations, metadata_serializer): # type: ignore[no-untyped-def]
flatten_dict = {}
for gate, caldef in calibrations.items():
for (qubits, params), schedule in caldef.items():
key = (gate, qubits, params)
flatten_dict[key] = schedule
header = struct.pack(formats.CALIBRATION_PACK, len(flatten_dict))
file_obj.write(header)
for (name, qubits, params), schedule in flatten_dict.items():
# In principle ScheduleBlock and Schedule can be supported.
# As of version 5 only ScheduleBlock is supported.
name_bytes = name.encode(common.ENCODE)
defheader = struct.pack(
formats.CALIBRATION_DEF_PACK,
len(name_bytes),
len(qubits),
len(params),
type_keys.Program.assign(schedule),
)
file_obj.write(defheader)
file_obj.write(name_bytes)
for qubit in qubits:
file_obj.write(struct.pack("!q", qubit))
for param in params:
value.write_value(file_obj, param)
schedules.write_schedule_block(file_obj, schedule, metadata_serializer)
def _write_registers(file_obj, in_circ_regs, full_bits): # type: ignore[no-untyped-def]
bitmap = {bit: index for index, bit in enumerate(full_bits)}
out_circ_regs = set()
for bit in full_bits:
if bit._register is not None and bit._register not in in_circ_regs:
out_circ_regs.add(bit._register)
for regs, is_in_circuit in [(in_circ_regs, True), (out_circ_regs, False)]:
for reg in regs:
standalone = all(bit._register is reg for bit in reg)
reg_name = reg.name.encode(common.ENCODE)
reg_type = reg.prefix.encode(common.ENCODE)
file_obj.write(
struct.pack(
formats.REGISTER_V4_PACK,
reg_type,
standalone,
reg.size,
len(reg_name),
is_in_circuit,
)
)
file_obj.write(reg_name)
REGISTER_ARRAY_PACK = "!%sq" % reg.size
bit_indices = []
for bit in reg:
bit_indices.append(bitmap.get(bit, -1))
file_obj.write(struct.pack(REGISTER_ARRAY_PACK, *bit_indices))
return len(in_circ_regs) + len(out_circ_regs)
def _write_layout(file_obj, circuit): # type: ignore[no-untyped-def]
if circuit.layout is None:
# Write a null header if there is no layout present
file_obj.write(struct.pack(formats.LAYOUT_V2_PACK, False, -1, -1, -1, 0, 0))
return
initial_size = -1
input_qubit_mapping = {}
initial_layout_array = []
extra_registers = defaultdict(list)
if circuit.layout.initial_layout is not None:
initial_size = len(circuit.layout.initial_layout)
layout_mapping = circuit.layout.initial_layout.get_physical_bits()
for i in range(circuit.num_qubits):
qubit = layout_mapping[i]
input_qubit_mapping[qubit] = i
if qubit._register is not None or qubit._index is not None:
if qubit._register not in circuit.qregs:
extra_registers[qubit._register].append(qubit)
initial_layout_array.append((qubit._index, qubit._register))
else:
initial_layout_array.append((None, None))
input_qubit_size = -1
input_qubit_mapping_array = []
if circuit.layout.input_qubit_mapping is not None:
input_qubit_size = len(circuit.layout.input_qubit_mapping)
input_qubit_mapping_array = [None] * input_qubit_size
layout_mapping = circuit.layout.initial_layout.get_virtual_bits()
for qubit, index in circuit.layout.input_qubit_mapping.items():
if (
getattr(qubit, "_register", None) is not None
and getattr(qubit, "_index", None) is not None
):
if qubit._register not in circuit.qregs:
extra_registers[qubit._register].append(qubit)
input_qubit_mapping_array[index] = layout_mapping[qubit]
else:
input_qubit_mapping_array[index] = layout_mapping[qubit]
final_layout_size = -1
final_layout_array = []
if circuit.layout.final_layout is not None:
final_layout_size = len(circuit.layout.final_layout)
final_layout_physical = circuit.layout.final_layout.get_physical_bits()
for i in range(circuit.num_qubits):
virtual_bit = final_layout_physical[i]
final_layout_array.append(circuit.find_bit(virtual_bit).index)
input_qubit_count = circuit._layout._input_qubit_count
if input_qubit_count is None:
input_qubit_count = -1
file_obj.write(
struct.pack(
formats.LAYOUT_V2_PACK,
True,
initial_size,
input_qubit_size,
final_layout_size,
len(extra_registers),
input_qubit_count,
)
)
_write_registers(
file_obj,
list(extra_registers),
[x for bits in extra_registers.values() for x in bits],
)
for index, register in initial_layout_array:
reg_name_bytes = (
None if register is None else register.name.encode(common.ENCODE)
)
file_obj.write(
struct.pack(
formats.INITIAL_LAYOUT_BIT_PACK,
-1 if index is None else index,
-1 if reg_name_bytes is None else len(reg_name_bytes),
)
)
if reg_name_bytes is not None:
file_obj.write(reg_name_bytes)
for i in input_qubit_mapping_array:
file_obj.write(struct.pack("!I", i))
for i in final_layout_array:
file_obj.write(struct.pack("!I", i))
def _read_layout(file_obj, circuit): # type: ignore[no-untyped-def]
header = formats.LAYOUT._make(
struct.unpack(formats.LAYOUT_PACK, file_obj.read(formats.LAYOUT_SIZE))