-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
411 lines (341 loc) · 19.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import torch, gc
import numpy as np
import torch.nn as nn
from sklearn.metrics import roc_auc_score, roc_curve, auc
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score, confusion_matrix
import os
import torch.nn.functional as F
import torch_scatter
from torch.nn import Sequential, Linear, ReLU
from torch_geometric.nn import GINConv, HypergraphConv, global_add_pool, global_max_pool
from torch_geometric.utils import softmax
import argparse
import os
import os.path as osp
from torch_geometric.loader import DataLoader
from torch_geometric.transforms import Constant
from torch_geometric.datasets import TUDataset
from sklearn.model_selection import StratifiedKFold
import torch_geometric.transforms as T
import random
import pickle as pkl
from pathlib import Path
from torch_geometric.data import InMemoryDataset, Data
from scipy.sparse import coo_matrix
from torch.nn.utils.rnn import pad_sequence
import subprocess
import json
import pprint
import time
from torch_geometric.utils import to_networkx
from datetime import datetime
import scipy.stats as stats
from torch import Tensor
import networkx as nx
import matplotlib.pyplot as plt
from networkx.drawing.nx_pydot import graphviz_layout
import model
torch.autograd.set_detect_anomaly(True)
import warnings
warnings.filterwarnings("ignore")
# dataset name
dataset_name = ''
# argument
def arg_parse():
parser = argparse.ArgumentParser(description='SIGNET')
parser.add_argument('--dataset', type=str, default='mutag')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--batch_size_test', type=int, default=9999)
parser.add_argument('--log_interval', type=int, default=1)
parser.add_argument('--num_trials', type=int, default=5)
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--lr', dest='lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--encoder_layers', type=int, default=2)
parser.add_argument('--hidden_dim', type=int, default=16)
parser.add_argument('--pooling', type=str, default='add', choices=['add', 'max'])
parser.add_argument('--readout', type=str, default='concat', choices=['concat', 'add', 'last'])
parser.add_argument('--explainer_model', type=str, default='gin', choices=['mlp', 'gin'])
parser.add_argument('--explainer_layers', type=int, default=5)
parser.add_argument('--explainer_hidden_dim', type=int, default=8)
parser.add_argument('--explainer_readout', type=str, default='add', choices=['concat', 'add', 'last'])
parser.add_argument('--temperature', type=float, default=0.2)
parser.add_argument('--lstm_layers', type=int, default=1)
parser.add_argument('--decoder_layers', type=int, default=1)
parser.add_argument('--alpha', type=float, default = 10.0)
parser.add_argument('--temporal_kernel_size', type=int, default=5)
parser.add_argument('--edge_importance_weighting', type=bool, default=False)
parser.add_argument('--lstm_num_layers', type=int, default=1)
parser.add_argument('--checkpoint', type=str, default='checkpoint')
return parser.parse_args()
# gpu check
DEFAULT_ATTRIBUTES = (
'index',
'uuid',
'name',
'timestamp',
'memory.total',
'memory.free',
'memory.used',
'utilization.gpu',
'utilization.memory'
)
def get_gpu_info(nvidia_smi_path='nvidia-smi', keys=DEFAULT_ATTRIBUTES, no_units=True):
nu_opt = '' if not no_units else ',nounits'
cmd = '%s --query-gpu=%s --format=csv,noheader%s' % (nvidia_smi_path, ','.join(keys), nu_opt)
output = subprocess.check_output(cmd, shell=True)
lines = output.decode().split('\n')
lines = [ line.strip() for line in lines if line.strip() != '' ]
temp = [ { k: v for k, v in zip(keys, line.split(', ')) } for line in lines ]
for i, itm in enumerate(temp):
if itm['index']=='3':
return itm
def visualize(G, cnt, color, epoch=None, loss=None):
node_score = color[0].cpu()
edge_score = color[1].cpu()
plt.figure(figsize=(100,100))
G1 = nx.Graph()
G1.add_nodes_from([("node{}".format(n[0]), {'weight':node_score[i].item()}) for i, n in enumerate(G.nodes(data=True))])
G1.add_edges_from(
("node{}".format(e[0]), "node{}".format(e[1]), {'weight':edge_score[i].item()}) for i, e in enumerate(G.edges(data=True))
)
pos = nx.spring_layout(G1)
nx.draw_networkx_nodes(
G1, pos, node_color=[n[1]['weight'] for n in G1.nodes(data=True)], node_shape='h',
node_size=3000, cmap=plt.cm.Blues, alpha=0.9
)
nx.draw_networkx_edges(
G1, pos, edge_color=[e[2]['weight'] for e in G1.edges(data=True)],
width=5, edge_cmap=plt.cm.Greys
)
nx.draw_networkx_labels(
G1, pos, font_family='sans-serif', font_color='black', font_size=10, font_weight='bold'
)
# pos = nx.kamada_kawai_layout(G)
# nx.draw_networkx_nodes(G,pos, node_color=node_score, cmap=plt.cm.Blues, alpha=0.9, node_size=2000)
# print(f'node score max, min :{torch.max(node_score).item(), torch.min(node_score).item()}')
# print(f'edge score max, min :{torch.max(edge_score).item(), torch.min(edge_score).item()}')
# print(f'edge score shape: {edge_score.shape, node_score.shape}, edge_score type: {type(edge_score)}')
# edge_score = torch.squeeze(edge_score)
# print(f'edge_score:{edge_score.shape}')
# edge_score = edge_score.numpy()
# nx.draw_networkx_edges(G,pos, edge_color=edge_score, width = 5, edge_cmap=plt.cm.Blues, style='dashed')
plt.show()
plt.savefig('./img/img' + str(cnt) + '.png')
plt.clf()
def run(args, device, seed, split=None):
set_seed(seed)
loaders, meta = get_data_loaders(args.dataset, args.batch_size, args.batch_size_test, random_state=seed)
n_feat = meta['num_feat']
n_edge_feat = meta['num_edge_feat']
n_node = meta['num_node']
n_time = meta['num_time']
model = SIGNET(n_node, n_time, n_feat, n_edge_feat, args, device).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
loss_rec_mean = nn.MSELoss()
loss_rec_none = nn.MSELoss(reduction='none')
explain_loader = loaders['explain']
train_loader = loaders['train']
val_loader = loaders['val']
test_loader = loaders['test']
best_model_name =''
best_auc = 0
epochs_vis = list(range(args.epochs))
val_auc_vis = []
test_auc_vis = []
check_1s=[] # temp mi max
check_2s=[] # temp mi min
check_3s=[] # spa mi max
check_4s=[] # spa mi min
check_5s=[] # rec
check_6s=[] # sampling
check_7s=[] # lld
bottleneck_count = torch.zeros(116).to(device)
for epoch in range(1, args.epochs+1):
model.train()
loss_all = 0
num_sample = 0
temp_max=[]
temp_min_view1=[]
temp_min_view2=[]
spa_max=[]
spa_min_view1=[]
spa_min_view2=[]
rec_view1=[]
rec_view2=[]
fore_view1=[]
fore_view2=[]
for data in train_loader:
optimizer.zero_grad()
data = data.to(device)
y_p0, y_hyper_p0, y_masked_p0, y_hyper_masked_p0, y_p1, y_hyper_p1, y_s_p0, y_hyper_s_p0, y_masked_s_p0, y_hyper_masked_s_p0, y_s_p1, y_hyper_s_p1, y_recon, y_recon_target, y_hyper_recon, y_hyper_recon_target, msk_log_prob, msk_log_prob_edge, x_norm, x_edge_norm, forecasted_value, forecasted_value_hyper = model(data, bottleneck_count)
loss_rec_sample = torch.mean(loss_rec_none(y_recon_target, y_recon), dim=-1).flatten().unsqueeze(0).clone().detach()
loss_rec_sample_hyper = torch.mean(loss_rec_none(y_hyper_recon_target, y_hyper_recon), dim=-1).flatten().unsqueeze(0).clone().detach()
msk_log_prob = msk_log_prob.flatten().unsqueeze(-1)
msk_log_prob_edge = msk_log_prob_edge.permute(1, 0, 2).contiguous().flatten().unsqueeze(-1)
loss_sampling = -torch.mean(torch.mm(loss_rec_sample,msk_log_prob))
loss_sampling_hyper = -torch.mean(torch.mm(loss_rec_sample_hyper, msk_log_prob_edge))
# club bound calculate
mi_temp_view1_lld, mi_temp_view1_bound = club(y_p0, y_p1, y_masked_p0)
mi_temp_view2_lld, mi_temp_view2_bound = club(y_hyper_p0, y_hyper_p1, y_hyper_masked_p0)
mi_spa_view1_lld, mi_spa_view1_bound = club(y_s_p0, y_s_p1, y_masked_s_p0)
mi_spa_view2_lld, mi_spa_view2_bound = club(y_hyper_s_p0, y_hyper_s_p1,y_hyper_masked_s_p0)
fore_batch, fore_time, fore_node, fore_dim = y_recon_target.size()
forecasted_target = y_recon_target.permute(1,0,2,3).contiguous()
forecasted_value = forecasted_value.view(fore_batch, fore_node, fore_time, fore_dim).permute(2,0,1,3).contiguous()
forecasted_value = forecasted_value[:4,:,:,:]
forecasted_target = forecasted_target[1:,:,:,:]
forecasted_value_hyper = forecasted_value_hyper.permute(1,0,2).contiguous()
forecasted_value_hyper = forecasted_value_hyper[:4,:,:]
forecasted_target_hyper = y_hyper_recon_target[1:,:,:]
loss = model.loss_nce(y_masked_p0, y_hyper_masked_p0, args.temperature).mean() \
+ mi_temp_view1_bound.mean() \
+ mi_temp_view2_bound.mean() \
+ model.loss_nce(y_masked_s_p0, y_hyper_masked_s_p0, args.temperature).mean() \
+ mi_spa_view1_bound.mean() \
+ mi_spa_view2_bound.mean() \
+ 1e+2 * loss_rec_mean(y_recon_target, y_recon) + 1e+2 * loss_rec_mean(y_hyper_recon_target, y_hyper_recon)\
+ 1e+3 * loss_rec_mean(forecasted_target, forecasted_value) + 1e+3 * loss_rec_mean(forecasted_target_hyper, forecasted_value_hyper)\
+ 1e-3 * loss_sampling + 1e-4 * loss_sampling_hyper\
- mi_temp_view1_lld.mean() - mi_temp_view2_lld.mean() - mi_spa_view1_lld.mean() -mi_spa_view2_lld.mean()
temp_max.append(model.loss_nce(y_masked_p0, y_hyper_masked_p0, args.temperature))
temp_min_view1.append(mi_temp_view1_bound)
temp_min_view2.append(mi_temp_view2_bound)
spa_max.append(model.loss_nce(y_masked_s_p0, y_hyper_masked_s_p0, args.temperature))
spa_min_view1.append(mi_spa_view1_bound)
spa_min_view2.append(mi_spa_view2_bound)
rec_view1.extend(loss_rec_none(y_recon_target, y_recon).flatten().tolist())
rec_view2.extend(loss_rec_none(y_hyper_recon_target, y_hyper_recon).flatten().tolist())
fore_view1.extend(loss_rec_none(forecasted_target, forecasted_value).flatten().tolist())
fore_view2.extend(loss_rec_none(forecasted_target_hyper, forecasted_value_hyper).flatten().tolist())
loss_all += loss.item() * data.num_graphs
num_sample += data.num_graphs
loss.backward()
optimizer.step()
del data.signal
del data.edge_index
del data.batch
del data
gc.collect()
torch.cuda.empty_cache()
info_train = 'Epoch {:3d}, Loss CL {:.4f}'.format(epoch, loss_all / num_sample)
temp_max_mu = torch.mean(torch.cat(temp_max))
temp_max_sigma = torch.std(torch.cat(temp_max))
temp_min_view1_mu = torch.mean(torch.cat(temp_min_view1))
temp_min_view1_sigma = torch.std(torch.cat(temp_min_view1))
temp_min_view2_mu = torch.mean(torch.cat(temp_min_view2))
temp_min_view2_sigma = torch.std(torch.cat(temp_min_view2))
spa_max_mu = torch.mean(torch.cat(spa_max))
spa_max_sigma = torch.std(torch.cat(spa_max))
spa_min_view1_mu = torch.mean(torch.cat(spa_min_view1))
spa_min_view1_sigma = torch.std(torch.cat(spa_min_view1))
spa_min_view2_mu = torch.mean(torch.cat(spa_min_view2))
spa_min_view2_sigma = torch.std(torch.cat(spa_min_view2))
rec_view1_mu = torch.mean(torch.tensor(rec_view1))
rec_view1_sigma = torch.std(torch.tensor(rec_view1))
rec_view2_mu = torch.mean(torch.tensor(rec_view2))
rec_view2_sigma = torch.std(torch.tensor(rec_view2))
fore_view1_mu = torch.mean(torch.tensor(fore_view1))
fore_view1_sigma = torch.std(torch.tensor(fore_view1))
fore_view2_mu = torch.mean(torch.tensor(fore_view2))
fore_view2_sigma = torch.std(torch.tensor(fore_view2))
if epoch % args.log_interval == 0:
model.eval()
# anomaly detection
all_ad_true = []
all_ad_score = []
for data in val_loader:
all_ad_true.append(data.label.cpu())
ad_true_check =data.label.cpu()
data = data.to(device)
with torch.no_grad():
y_p0, y_hyper_p0, y_masked_p0, y_hyper_masked_p0, y_p1, y_hyper_p1, y_s_p0, y_hyper_s_p0, y_masked_s_p0, y_hyper_masked_s_p0, y_s_p1, y_hyper_s_p1, y_recon, y_recon_target, y_hyper_recon, y_hyper_recon_target, msk_log_prob, msk_log_prob_edge, _, _, forecasted_value, forecasted_value_hyper = model(data, bottleneck_count)
mi_temp_view1_lld, mi_temp_view1_bound = club(y_p0, y_p1, y_masked_p0)
mi_temp_view2_lld, mi_temp_view2_bound = club(y_hyper_p0, y_hyper_p1, y_hyper_masked_p0)
mi_spa_view1_lld, mi_spa_view1_bound = club(y_s_p0, y_s_p1, y_masked_s_p0)
mi_spa_view2_lld, mi_spa_view2_bound = club(y_hyper_s_p0, y_hyper_s_p1,y_hyper_masked_s_p0)
batch_num = model.loss_nce(y_masked_p0, y_hyper_masked_p0, args.temperature).shape[0]
fore_batch, fore_time, fore_node, fore_dim = y_recon_target.size()
forecasted_target = y_recon_target.permute(1,0,2,3).contiguous()
forecasted_value = forecasted_value.view(fore_batch, fore_node, fore_time, fore_dim).permute(2,0,1,3).contiguous()
forecasted_value = forecasted_value[:4,:,:,:]
forecasted_target = forecasted_target[1:,:,:,:]
forecasted_value_hyper = forecasted_value_hyper.permute(1,0,2).contiguous()
forecasted_value_hyper = forecasted_value_hyper[:4,:,:]
forecasted_target_hyper = y_hyper_recon_target[1:,:,:]
f_t, _, f_n = forecasted_value_hyper.size()
forecasted_value_hyper = forecasted_value_hyper.view(f_t, batch_num, -1, f_n)
forecasted_target_hyper = forecasted_target_hyper.view(f_t, batch_num, -1, f_n)
temp_max_likelihood = stats.norm.pdf(model.loss_nce(y_masked_p0, y_hyper_masked_p0, args.temperature).cpu(), temp_max_mu.cpu(), temp_max_sigma.cpu())
temp_min_view1_likelihood = stats.norm.pdf(mi_temp_view1_bound.cpu(), temp_min_view1_mu.cpu(), temp_min_view1_sigma.cpu())
temp_min_view2_likelihood = stats.norm.pdf(mi_temp_view2_bound.cpu(), temp_min_view2_mu.cpu(), temp_min_view2_sigma.cpu())
spa_max_likelihood = stats.norm.pdf(torch.mean(model.loss_nce(y_masked_s_p0, y_hyper_masked_s_p0, args.temperature).view(batch_num, -1), dim = 1).cpu(), spa_max_mu.cpu(), spa_max_sigma.cpu())
spa_min_view1_likelihood = stats.norm.pdf(torch.mean(mi_spa_view1_bound.view(batch_num,-1), dim=1).cpu(), spa_min_view1_mu.cpu(), spa_min_view1_sigma.cpu())
spa_min_view2_likelihood = stats.norm.pdf(torch.mean(mi_spa_view2_bound.view(batch_num, -1), dim=1).cpu(), spa_min_view2_mu.cpu(), spa_min_view2_sigma.cpu())
rec_view1_likelihood = stats.norm.pdf(torch.mean(loss_rec_none(y_recon_target, y_recon), dim=(1,2,3)).cpu(), rec_view1_mu.cpu(), rec_view1_sigma.cpu())
rec_view2_likelihood = stats.norm.pdf(torch.mean(loss_rec_none(y_hyper_recon_target, y_hyper_recon).view(n_time, batch_num, -1, n_feat), dim=(0,2,3)).cpu(), rec_view2_mu.cpu(), rec_view2_sigma.cpu())
fore_view1_likelihood = stats.norm.pdf(torch.mean(loss_rec_none(forecasted_target, forecasted_value), dim=(0,2,3)).cpu(), fore_view1_mu.cpu(), fore_view1_sigma.cpu())
fore_view2_likelihood = stats.norm.pdf(torch.mean(loss_rec_none(forecasted_target_hyper, forecasted_value_hyper), dim=(0,2,3)).cpu(), fore_view2_mu.cpu(), fore_view2_sigma.cpu())
ano_score= temp_max_likelihood\
+temp_min_view1_likelihood\
+temp_min_view2_likelihood\
+spa_max_likelihood\
+spa_min_view1_likelihood\
+spa_min_view2_likelihood\
+rec_view1_likelihood\
+rec_view2_likelihood\
+fore_view1_likelihood\
+fore_view2_likelihood
loss_rec_view1 = torch.mean(loss_rec_none(y_recon_target, y_recon), dim=(2,3))
all_ad_score.append(torch.tensor(ano_score))
del data.signal
del data.edge_index
del data.batch
del data
gc.collect()
torch.cuda.empty_cache()
ad_true = torch.cat(all_ad_true)
ad_score = torch.cat(all_ad_score)
ad_auc_val = roc_auc_score(ad_true, ad_score)
# to select optimal thresholding value
fpr, tpr, thresholds = roc_curve(ad_true, ad_score)
optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_idx]
ad_pred = torch.where(ad_score>=optimal_threshold, 1., 0.)
ad_accuracy_val = accuracy_score(ad_true, ad_pred)
ad_f1_val = f1_score(ad_true, ad_pred)
ad_recall_val = recall_score(ad_true, ad_pred)
ad_precision_val = precision_score(ad_true, ad_pred)
tn, fp, fn, tp = confusion_matrix(ad_true, ad_pred).ravel()
ad_specificity_val = tn / (tn + fp)
abn_loss= []
n_loss = []
for i, itm in enumerate(ad_true):
if itm == 1:
abn_loss.append(ad_score[i].item())
else:
n_loss.append(ad_score[i].item())
info_val = 'AD_AUC_VAL:{:.4f}'.format(ad_auc_val)
info_vals = '[VAL] ACC:{:.4f}, '.format(ad_accuracy_val)\
+ 'F1:{:.4f}, '.format(ad_f1_val)\
+ 'RECALL:{:.4f}, '.format(ad_recall_val)\
+ 'PRE:{:.4f}, '.format(ad_precision_val)\
+ 'SPE:{:.4f}'.format(ad_specificity_val)
val_auc_vis.append(ad_auc_val)
return ad_auc_val, best_auc
# main
if __name__ == '__main__':
args = arg_parse()
# device
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device: ', device)
print('Current cuda device: ', torch.cuda.current_device())
print('Count of using GPUs: ', torch.cuda.device_count())
ad_aucs = []
key_auc_list = []
splits=[None]*args.num_trials
best_auc = 0
for trial in range(args.num_trials):
results, best_temp = run(args, device, seed=trial, split=splits[trial])