|
| 1 | +import math |
| 2 | +from typing import List, Tuple |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import openai |
| 6 | +from sklearn.metrics.pairwise import cosine_similarity |
| 7 | +from transformers import PreTrainedModel, PreTrainedTokenizer |
| 8 | + |
| 9 | + |
| 10 | +def token_prob_difference( |
| 11 | + initial_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 12 | + perturbed_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 13 | +) -> Tuple[float, List[str], np.ndarray]: |
| 14 | + # Extract token and logprob from initial_logprobs |
| 15 | + initial_token_logprobs = [ |
| 16 | + (logprob.token, logprob.logprob) for logprob in initial_logprobs.content |
| 17 | + ] |
| 18 | + initial_tokens = [content.token for content in initial_logprobs.content] |
| 19 | + |
| 20 | + # Create a list of dictionaries with token and top logprobs from perturbed_logprobs |
| 21 | + perturbed_token_logprobs_list = [ |
| 22 | + { |
| 23 | + top_logprob.token: top_logprob.logprob |
| 24 | + for top_logprob in token_content.top_logprobs |
| 25 | + } |
| 26 | + for token_content in perturbed_logprobs.content |
| 27 | + ] |
| 28 | + |
| 29 | + # Probability change for each input token |
| 30 | + prob_difference_per_token = np.zeros(len(initial_tokens)) |
| 31 | + NEAR_ZERO_PROB = -100 # Logprob constant for near zero probability |
| 32 | + |
| 33 | + # Calculate the absolute difference in probabilities for each token |
| 34 | + for i, initial_token in enumerate(initial_token_logprobs): |
| 35 | + perturbed_token_logprobs = ( |
| 36 | + perturbed_token_logprobs_list[i] |
| 37 | + if i < len(perturbed_token_logprobs_list) |
| 38 | + else {} |
| 39 | + ) |
| 40 | + perturbed_logprob = perturbed_token_logprobs.get( |
| 41 | + initial_token[0], NEAR_ZERO_PROB |
| 42 | + ) |
| 43 | + prob_difference_per_token[i] = abs( |
| 44 | + math.exp(initial_token[1]) - math.exp(perturbed_logprob) |
| 45 | + ) |
| 46 | + |
| 47 | + # Note: Different length outputs shift the mean upwards. This may or may not be desired behaviour. |
| 48 | + return prob_difference_per_token.mean(), initial_tokens, prob_difference_per_token |
| 49 | + |
| 50 | + |
| 51 | +def token_displacement( |
| 52 | + initial_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 53 | + perturbed_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 54 | +) -> Tuple[float, List[str], np.ndarray]: |
| 55 | + initial_tokens = [content.token for content in initial_logprobs.content] |
| 56 | + perturbed_top_tokens = [ |
| 57 | + [top_logprob.token for top_logprob in token_content.top_logprobs] |
| 58 | + for token_content in perturbed_logprobs.content |
| 59 | + ] |
| 60 | + |
| 61 | + # Token displacement for each initially predicted token |
| 62 | + displacement_per_token = np.zeros(len(initial_tokens)) |
| 63 | + MAX_TOKEN_DISPLACEMENT = 20 |
| 64 | + for i, token in enumerate(initial_tokens): |
| 65 | + if i < len(perturbed_top_tokens) and token in perturbed_top_tokens[i]: |
| 66 | + displacement_per_token[i] = perturbed_top_tokens[i].index(token) |
| 67 | + else: |
| 68 | + displacement_per_token[i] = MAX_TOKEN_DISPLACEMENT # TODO: Revise |
| 69 | + |
| 70 | + return displacement_per_token.mean(), initial_tokens, displacement_per_token |
| 71 | + |
| 72 | + |
| 73 | +# NOTE: this metric does not work. It's left to serve as discussion |
| 74 | +def deprecated_max_logprob_difference( |
| 75 | + initial_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 76 | + perturbed_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 77 | +): |
| 78 | + # Get the logprobs of the top 20 tokens for the initial and perturbed outputs |
| 79 | + # Warning: this should probably be a list with the top logprobs at each token position instead |
| 80 | + initial_top_logprobs = { |
| 81 | + logprob.token: logprob.logprob for logprob in initial_logprobs.content |
| 82 | + } |
| 83 | + perturbed_top_logprobs = { |
| 84 | + logprob.token: logprob.logprob for logprob in perturbed_logprobs.content |
| 85 | + } |
| 86 | + |
| 87 | + # Calculate the maximum difference in logprobs |
| 88 | + max_difference = 0 |
| 89 | + for token, initial_logprob in initial_top_logprobs.items(): |
| 90 | + perturbed_logprob = perturbed_top_logprobs.get(token, 0) |
| 91 | + max_difference = max(max_difference, abs(initial_logprob - perturbed_logprob)) |
| 92 | + |
| 93 | + return max_difference |
| 94 | + |
| 95 | + |
| 96 | +def get_sentence_embeddings( |
| 97 | + sentence: str, model: PreTrainedModel, tokenizer: PreTrainedTokenizer |
| 98 | +) -> Tuple[np.ndarray, np.ndarray]: |
| 99 | + inputs = tokenizer(sentence, return_tensors="pt") |
| 100 | + embeddings = model.transformer.wte(inputs["input_ids"]) # Get the embeddings |
| 101 | + embeddings = embeddings.detach().numpy().squeeze() |
| 102 | + return embeddings.mean(axis=0), embeddings |
| 103 | + |
| 104 | + |
| 105 | +def cosine_similarity_attribution( |
| 106 | + original_output_choice: openai.types.chat.chat_completion.Choice, |
| 107 | + perturbed_output_choice: openai.types.chat.chat_completion.Choice, |
| 108 | + model: PreTrainedModel, |
| 109 | + tokenizer: PreTrainedTokenizer, |
| 110 | +) -> Tuple[float, np.ndarray]: |
| 111 | + # Extract embeddings |
| 112 | + initial_output_sentence_emb, initial_output_token_embs = get_sentence_embeddings( |
| 113 | + original_output_choice.message.content, model, tokenizer |
| 114 | + ) |
| 115 | + perturbed_output_sentence_emb, perturbed_output_token_embs = ( |
| 116 | + get_sentence_embeddings( |
| 117 | + perturbed_output_choice.message.content, model, tokenizer |
| 118 | + ) |
| 119 | + ) |
| 120 | + |
| 121 | + # Reshape embeddings |
| 122 | + initial_output_sentence_emb = initial_output_sentence_emb.reshape(1, -1) |
| 123 | + perturbed_output_sentence_emb = perturbed_output_sentence_emb.reshape(1, -1) |
| 124 | + |
| 125 | + # Calculate similarities |
| 126 | + self_similarity = float( |
| 127 | + cosine_similarity(initial_output_sentence_emb, initial_output_sentence_emb) |
| 128 | + ) |
| 129 | + sentence_similarity = float( |
| 130 | + cosine_similarity(initial_output_sentence_emb, perturbed_output_sentence_emb) |
| 131 | + ) |
| 132 | + |
| 133 | + # Calculate token similarities for shared length |
| 134 | + shared_length = min( |
| 135 | + initial_output_token_embs.shape[0], perturbed_output_token_embs.shape[0] |
| 136 | + ) |
| 137 | + token_similarities_shared = cosine_similarity( |
| 138 | + initial_output_token_embs[:shared_length], |
| 139 | + perturbed_output_token_embs[:shared_length], |
| 140 | + ).diagonal() |
| 141 | + |
| 142 | + # Pad token similarities to match initial token embeddings shape |
| 143 | + token_similarities = np.pad( |
| 144 | + token_similarities_shared, |
| 145 | + (0, initial_output_token_embs.shape[0] - shared_length), |
| 146 | + ) |
| 147 | + |
| 148 | + # Return difference in sentence similarity and token similarities |
| 149 | + return self_similarity - sentence_similarity, 1 - token_similarities |
| 150 | + |
| 151 | + |
| 152 | +def _is_token_in_top_20( |
| 153 | + token: str, |
| 154 | + top_logprobs: List[openai.types.chat.chat_completion_token_logprob.TopLogprob], |
| 155 | +): |
| 156 | + top_20_tokens = set(logprob.token for logprob in top_logprobs) |
| 157 | + return token in top_20_tokens |
| 158 | + |
| 159 | + |
| 160 | +def any_tokens_in_top_20( |
| 161 | + initial_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 162 | + new_logprobs: openai.types.chat.chat_completion.ChoiceLogprobs, |
| 163 | +) -> bool: |
| 164 | + if ( |
| 165 | + initial_logprobs is None |
| 166 | + or new_logprobs is None |
| 167 | + or initial_logprobs.content is None |
| 168 | + or new_logprobs.content is None |
| 169 | + ): |
| 170 | + return False |
| 171 | + |
| 172 | + return any( |
| 173 | + _is_token_in_top_20(initial_token.token, new_token.top_logprobs) |
| 174 | + for initial_token, new_token in zip( |
| 175 | + initial_logprobs.content, new_logprobs.content |
| 176 | + ) |
| 177 | + ) |
0 commit comments