-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
186 lines (167 loc) · 7 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import math
from dgl.nn.pytorch import edge_softmax
import dgl.function as fn
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch as th
class GraphSAGELayer(nn.Module):
def __init__(self,
in_feats,
out_feats,
aggregator_type,
activation,
dropout,
num_heads=1,
bias=True,
use_pp=False,
use_lynorm=True):
super(GraphSAGELayer, self).__init__()
# The input feature size gets doubled as we concatenated the original
# features with the new features.
self._in_feats = in_feats
self.linear = nn.Linear(2 * in_feats, out_feats, bias=bias)
self.num_heads = num_heads
self.activation = activation
self.use_pp = use_pp
if use_pp:
aggregator_type='gcn'
self._aggre_type = aggregator_type
# aggregator type: mean/pool/lstm/gcn/attention
self.leaky_relu = nn.LeakyReLU(0.2)
if aggregator_type == 'pool':
self.fc_pool = nn.Linear(in_feats, in_feats)
elif aggregator_type == 'lstm':
self.lstm = nn.LSTM(in_feats, in_feats, batch_first=True)
elif aggregator_type == 'attn':
self.fc_attn = nn.Linear(in_feats, in_feats*self.num_heads)
self.attn_l = nn.Parameter(th.FloatTensor(size=(1, num_heads, in_feats)))
self.attn_r = nn.Parameter(th.FloatTensor(size=(1, num_heads, in_feats)))
if dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = 0.
if use_lynorm:
self.lynorm = nn.LayerNorm(out_feats, elementwise_affine=True)
else:
self.lynorm = lambda x: x
self.reset_parameters()
def reset_parameters(self):
# stdv = 1. / math.sqrt(self.linear.weight.size(1))
# self.linear.weight.data.uniform_(-stdv, stdv)
# if self.linear.bias is not None:
# self.linear.bias.data.uniform_(-stdv, stdv)
"""Reinitialize learnable parameters."""
gain = nn.init.calculate_gain('relu')
if self._aggre_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
if self._aggre_type == 'lstm':
self.lstm.reset_parameters()
elif self._aggre_type == 'attn':
gain = nn.init.calculate_gain('relu')
nn.init.xavier_uniform_(self.fc_attn.weight, gain=gain)
nn.init.xavier_uniform_(self.attn_l, gain=gain)
nn.init.xavier_uniform_(self.attn_r, gain=gain)
def _lstm_reducer(self, nodes):
"""LSTM reducer
NOTE(zihao): lstm reducer with default schedule (degree bucketing)
is slow, we could accelerate this with degree padding in the future.
"""
m = nodes.mailbox['m'] # (B, L, D)
batch_size = m.shape[0]
h = (m.new_zeros((1, batch_size, self._in_feats)),
m.new_zeros((1, batch_size, self._in_feats)))
_, (rst, _) = self.lstm(m, h)
return {'h': rst.squeeze(0)}
def forward(self, g, h):
g = g.local_var()
if not self.use_pp or not self.training:
norm = self.get_norm(g)
# g.ndata['h'] = h
# g.update_all(fn.copy_src(src='h', out='m'),
# fn.sum(msg='m', out='h'))
# ah = g.ndata.pop('h')
if self._aggre_type == 'mean':
g.ndata['h'] = h
g.update_all(fn.copy_src('h', 'm'), fn.mean('m', 'h'))
ah = g.ndata.pop('h')
elif self._aggre_type == 'gcn':
g.ndata['h'] = h
g.update_all(fn.copy_src('h', 'm'), fn.sum('m', 'h'))
# divide in_degrees
# degs = graph.in_degrees().float()
# degs = degs.to(feat.device)
# h_neigh = (graph.ndata['neigh'] + graph.ndata['h']) / (degs.unsqueeze(-1) + 1)
ah = g.ndata.pop('h')
ah = ah * norm
elif self._aggre_type == 'pool':
g.ndata['h'] = F.relu(self.fc_pool(h))
g.update_all(fn.copy_src('h', 'm'), fn.max('m', 'h'))
ah = g.ndata['h']
elif self._aggre_type == 'lstm':
g.ndata['h'] = h
g.update_all(fn.copy_src('h', 'm'), self._lstm_reducer)
ah = g.ndata['h']
elif self._aggre_type == 'attn':
feat = self.fc_attn(h).view(-1, self.num_heads, self._in_feats)
el = (feat * self.attn_l).sum(dim=-1).unsqueeze(-1)
er = (feat * self.attn_r).sum(dim=-1).unsqueeze(-1)
g.ndata.update({'ft': feat, 'el': el, 'er': er})
g.apply_edges(fn.u_add_v('el', 'er', 'e'))
e = self.leaky_relu(g.edata.pop('e'))
g.edata['a'] = edge_softmax(g, e)
g.update_all(fn.u_mul_e('ft', 'a', 'm'),
fn.sum('m', 'ft'))
ah = g.ndata['ft']
ah = ah.squeeze(1)
else:
raise KeyError('Aggregator type {} not recognized.'.format(self._aggre_type))
h = self.concat(h, ah, norm)
if self.dropout:
h = self.dropout(h)
# GraphSAGE GCN does not require fc_self.
# if self._aggre_type == 'gcn':
# rst = self.fc_neigh(ah)
# else:
# rst = self.fc_self(h) + self.fc_neigh(ah)
h = self.linear(h)
h = self.lynorm(h)
if self.activation:
h = self.activation(h)
return h
def concat(self, h, ah, norm):
h = torch.cat((h, ah), dim=1)
return h
def get_norm(self, g):
norm = 1. / g.in_degrees().float().unsqueeze(1)
norm[torch.isinf(norm)] = 0
norm = norm.to(self.linear.weight.device)
return norm
class GraphSAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout,
use_pp,
aggregator_type):
super(GraphSAGE, self).__init__()
self.layers = nn.ModuleList()
# input layer
self.layers.append(GraphSAGELayer(in_feats, n_hidden, aggregator_type, activation=activation,
dropout=dropout, use_pp=use_pp, use_lynorm=True))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(
GraphSAGELayer(n_hidden, n_hidden, aggregator_type, activation=activation, dropout=dropout,
use_pp=False, use_lynorm=True))
# output layer
self.layers.append(GraphSAGELayer(n_hidden, n_classes, aggregator_type, activation=None,
dropout=dropout, use_pp=False, use_lynorm=False))
def forward(self, g):
h = g.ndata['features']
for layer in self.layers:
h = layer(g, h)
return h