forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaximal-network-rank.py
111 lines (101 loc) · 3.94 KB
/
maximal-network-rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Time: O(m + n + k^2), k is the number of values greater or equal to top2
# Space: O(m + n)
# optimized from Solution2 with counting sort
class Solution(object):
def maximalNetworkRank(self, n, roads):
"""
:type n: int
:type roads: List[List[int]]
:rtype: int
"""
MAX_N = 100
MAX_NUM = MAX_N-1
def counting_sort(arr, key=lambda x:x, reverse=False): # Time: O(n), Space: O(n)
count = [0]*(MAX_NUM+1)
for x in arr:
count[key(x)] += 1
for i in xrange(1, len(count)):
count[i] += count[i-1]
result = [0]*len(arr)
if not reverse:
for x in reversed(arr): # stable sort
count[key(x)] -= 1
result[count[key(x)]] = x
else:
for x in arr: # stable sort
count[key(x)] -= 1
result[count[key(x)]] = x
result.reverse()
return result
degree = [0]*n
adj = collections.defaultdict(set)
for a, b in roads:
degree[a] += 1
degree[b] += 1
adj[a].add(b)
adj[b].add(a)
sorted_idx = counting_sort(xrange(n), key=lambda x:degree[x], reverse=True)
m = 2
while m < n:
if degree[sorted_idx[m]] != degree[sorted_idx[1]]:
break
m += 1
result = degree[sorted_idx[0]] + degree[sorted_idx[1]] - 1 # at least sum(top2 values) - 1
for i in xrange(m-1): # only need to check pairs of top2 values
for j in xrange(i+1, m):
if degree[sorted_idx[i]]+degree[sorted_idx[j]]-int(sorted_idx[i] in adj and sorted_idx[j] in adj[sorted_idx[i]]) > result: # if equal to ideal sum of top2 values, break
return degree[sorted_idx[i]]+degree[sorted_idx[j]]-int(sorted_idx[i] in adj and sorted_idx[j] in adj[sorted_idx[i]])
return result
# Time: O(m + nlogn + k^2), k is the number of values greater or equal to top2
# Space: O(m + n)
import collections
# optimized from Solution3
class Solution2(object):
def maximalNetworkRank(self, n, roads):
"""
:type n: int
:type roads: List[List[int]]
:rtype: int
"""
degree = [0]*n
adj = collections.defaultdict(set)
for a, b in roads:
degree[a] += 1
degree[b] += 1
adj[a].add(b)
adj[b].add(a)
sorted_idx = range(n)
sorted_idx.sort(key=lambda x:-degree[x])
m = 2
while m < n:
if degree[sorted_idx[m]] != degree[sorted_idx[1]]:
break
m += 1
result = degree[sorted_idx[0]] + degree[sorted_idx[1]] - 1 # at least sum(top2 values) - 1
for i in xrange(m-1): # only need to check pairs of top2 values
for j in xrange(i+1, m):
if degree[sorted_idx[i]]+degree[sorted_idx[j]]-int(sorted_idx[i] in adj and sorted_idx[j] in adj[sorted_idx[i]]) > result: # if equal to ideal sum of top2 values, break
return degree[sorted_idx[i]]+degree[sorted_idx[j]]-int(sorted_idx[i] in adj and sorted_idx[j] in adj[sorted_idx[i]])
return result
# Time: O(m + n^2)
# Space: O(m + n)
import collections
class Solution3(object):
def maximalNetworkRank(self, n, roads):
"""
:type n: int
:type roads: List[List[int]]
:rtype: int
"""
degree = [0]*n
adj = collections.defaultdict(set)
for a, b in roads:
degree[a] += 1
degree[b] += 1
adj[a].add(b)
adj[b].add(a)
result = 0
for i in xrange(n-1):
for j in xrange(i+1, n):
result = max(result, degree[i]+degree[j]-int(i in adj and j in adj[i]))
return result