-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
501 lines (375 loc) · 14.9 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from itertools import product
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Layer
from scipy import interp
from sklearn.metrics import auc, roc_curve
EPS = 1e-8
def _sanitize(y_true, y_pred, threshold, typecast='float32'):
y_true = K.cast(y_true, typecast)
y_pred = K.cast(y_pred > threshold, typecast)
return y_true, y_pred
def _tn(y_true, y_pred, typecast='float32'):
good_preds = K.cast(K.equal(y_true, y_pred), typecast)
true_neg = K.cast(
K.sum(good_preds * K.cast(K.equal(y_true, 0), typecast)), typecast)
return true_neg
def _tp(y_true, y_pred, typecast='float32'):
good_preds = K.cast(K.equal(y_true, y_pred), typecast)
true_pos = K.cast(K.sum(good_preds * y_true), typecast)
return true_pos
def _fp(y_true, y_pred, typecast='float32'):
bad_preds = K.cast(tf.logical_not(K.equal(y_true, y_pred)), typecast)
false_pos = K.cast(
K.sum(bad_preds * K.cast(K.equal(y_true, 0), typecast)), typecast)
return false_pos
def _fn(y_true, y_pred, typecast='float32'):
bad_preds = K.cast(tf.logical_not(K.equal(y_true, y_pred)), typecast)
false_neg = K.cast(K.sum(bad_preds * y_true), typecast)
return false_neg
def _tp_tn_fp_fn(y_true, y_pred):
return _tp(y_true, y_pred), _tn(y_true, y_pred), \
_fp(y_true, y_pred), _fn(y_true, y_pred)
def _fpr(fp, tn, eps=EPS):
return fp / (fp + tn + eps)
def _fnr(fn, tp, eps=EPS):
return fn / (fn + tp + eps)
def _tpr(fn, tp, eps=EPS):
return 1 - _fnr(fn, tp, eps)
def _tnr(fp, tn, eps=EPS):
return 1 - _fpr(fp, tn, eps)
def _fbeta(fp, fn, tp, beta2, eps=EPS):
return (1 + beta2) * tp / ((1 + beta2) * tp + beta2 * fn + fp + eps)
def _distance(fnr, fpr):
return K.sqrt(K.square(fnr) + K.square(fpr))
def tp(y_true, y_pred, threshold=0.5, eps=None):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
return _tp(y_true, y_pred)
def tn(y_true, y_pred, threshold=0.5, eps=None):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
return _tn(y_true, y_pred)
def fp(y_true, y_pred, threshold=0.5, eps=None):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
return _fp(y_true, y_pred)
def fn(y_true, y_pred, threshold=0.5, eps=None):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
return _fn(y_true, y_pred)
def fpr(y_true, y_pred, threshold=0.5, eps=EPS):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
fp = _fp(y_true, y_pred)
tn = _tn(y_true, y_pred)
return fp / (fp + tn + eps)
# return _fpr(fp, tn)
def fnr(y_true, y_pred, threshold=0.5, eps=EPS):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
fn = _fn(y_true, y_pred)
tp = _tp(y_true, y_pred)
return fn / (fn + tp + eps)
# return _fnr(fn, tp, eps)
def tpr(y_true, y_pred, threshold=0.5, eps=EPS):
return 1 - fnr(y_true, y_pred, threshold, eps)
def tnr(y_true, y_pred, threshold=0.5, eps=EPS):
return 1 - fpr(y_true, y_pred, threshold, eps)
def fbeta(y_true, y_pred, beta=1, threshold=0.5, eps=EPS):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
fn = _fn(y_true, y_pred)
tp = _tp(y_true, y_pred)
fp = _fp(y_true, y_pred)
beta2 = beta**2
return _fbeta(fp, fn, tp, beta2, eps=eps)
def f1(y_true, y_pred, threshold=0.5, eps=EPS):
return fbeta(y_true, y_pred, beta=1, threshold=threshold, eps=eps)
def distance(y_true, y_pred, threshold=0.5, eps=EPS):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
tp, tn, fp, fn = _tp_tn_fp_fn(y_true, y_pred)
# fnr = fn / (fn + tp + eps)
# fpr = return fp / (fp + tn + eps)
fnr = _fnr(fn, tp, eps=eps)
fpr = _fpr(fp, tn, eps=eps)
return _distance(fnr, fpr)
def accuracy(y_true, y_pred, threshold=0.5, eps=EPS):
y_true, y_pred = _sanitize(y_true, y_pred, threshold=threshold)
return K.mean(K.equal(y_true, y_pred))
def compose(metrics, results, threshold=0.5, eps=EPS):
""" Computes all specified metrics on results for each desired
threshold value
Args:
metrics (list):
results (tuple): (y_true, y_pred) either tf Tensor or ndarray
threshold (int/tuple): list of values at each y_pred should be binarized
eps: minimum value to avoid zero division error
Returns:
list of results at each given threshold
Example: [((metric1, @thrs1), (metric1, @thrs2), (metric1, @thrs3)),
((metric2, @thrs1), (metric2, @thrs2), (metric2, @thrs3))]
"""
meter = []
y_true, y_pred = results
if not isinstance(threshold, (tuple, list, np.ndarray)):
threshold = (threshold, )
n = len(threshold)
for metric, thres in product(metrics, threshold):
meter += [metric(y_true, y_pred, threshold=thres, eps=eps)]
meter = K.get_session().run(meter)
return np.asarray([meter[i:i + n] for i in range(0, len(meter), n)])
class TruePos(Layer):
""" Computes TP globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(TruePos, self).__init__(name='tp')
self.stateful = True
self.threshold = threshold
self.tp = K.variable(0, dtype='float32')
def reset_states(self):
K.set_value(self.tp, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
true_pos = _tp(y_true, y_pred)
self.add_update(
K.update_add(self.tp, true_pos), inputs=[y_true, y_pred])
return self.tp
class TrueNeg(Layer):
""" Computes TN globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(TrueNeg, self).__init__(name='tn')
self.stateful = True
self.threshold = threshold
self.tn = K.variable(0, dtype='float32')
def reset_states(self):
K.set_value(self.tn, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
true_neg = _tn(y_true, y_pred)
self.add_update(
K.update_add(self.tn, true_neg), inputs=[y_true, y_pred])
return self.tn
class FalsePos(Layer):
""" Computes FP globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(FalsePos, self).__init__(name='fp')
self.stateful = True
self.threshold = threshold
self.fp = K.variable(0, dtype='float32')
def reset_states(self):
K.set_value(self.fp, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
false_pos = _fp(y_true, y_pred)
self.add_update(
K.update_add(self.fp, false_pos), inputs=[y_true, y_pred])
return self.fp
class FalseNeg(Layer):
""" Computes FN globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(FalseNeg, self).__init__(name='fn')
self.stateful = True
self.threshold = threshold
self.fn = K.variable(0, dtype='float32')
def reset_states(self):
K.set_value(self.fn, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
false_neg = _fn(y_true, y_pred)
self.add_update(
K.update_add(self.fn, false_neg), inputs=[y_true, y_pred])
return self.fn
class FalsePosRate(Layer):
""" Computes FPR globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(FalsePosRate, self).__init__(name='fpr')
self.stateful = True
self.threshold = threshold
self.fp = K.variable(0, dtype='float32')
self.tn = K.variable(0, dtype='float32')
self.eps = eps
def reset_states(self):
K.set_value(self.fp, 0)
K.set_value(self.tn, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
false_pos = _fp(y_true, y_pred)
true_neg = _tn(y_true, y_pred)
self.add_update(
K.update_add(self.fp, false_pos), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.tn, true_neg), inputs=[y_true, y_pred])
return self.fp / (self.fp + self.tn + self.eps)
# return _fpr(self.fp, self.tn, eps=self.eps)
class FalseNegRate(Layer):
""" Computes FNR globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(FalseNegRate, self).__init__(name='fnr')
self.stateful = True
self.threshold = threshold
self.tp = K.variable(0, dtype='float32')
self.fn = K.variable(0, dtype='float32')
self.eps = eps
def reset_states(self):
K.set_value(self.tp, 0)
K.set_value(self.fn, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
true_pos = _tp(y_true, y_pred)
false_neg = _fn(y_true, y_pred)
self.add_update(
K.update_add(self.tp, true_pos), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.fn, false_neg), inputs=[y_true, y_pred])
return self.fn / (self.fn + self.tp + self.eps)
# return _fnr(self.fn, self.tp, eps=self.eps)
class FBetaScore(Layer):
""" Computes F-beta score globally
"""
def __init__(self, beta, threshold=0.5, eps=EPS):
super(FBetaScore, self).__init__(name='f{:d}'.format(beta))
self.stateful = True
self.threshold = threshold
self.tp = K.variable(0, dtype='float32')
self.fn = K.variable(0, dtype='float32')
self.fp = K.variable(0, dtype='float32')
self.beta2 = beta**2
self.eps = eps
def reset_states(self):
K.set_value(self.tp, 0)
K.set_value(self.fn, 0)
K.set_value(self.fp, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
true_pos = _tp(y_true, y_pred)
false_neg = _fn(y_true, y_pred)
false_pos = _fp(y_true, y_pred)
self.add_update(
K.update_add(self.tp, true_pos), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.fn, false_neg), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.fp, false_pos), inputs=[y_true, y_pred])
return _fbeta(self.fp, self.fn, self.tp, self.beta2, eps=self.eps)
class Distance(Layer):
""" Computes distance function globally
"""
def __init__(self, threshold=0.5, eps=EPS):
super(Distance, self).__init__(name='dis')
self.stateful = True
self.threshold = threshold
self.tp = K.variable(0, dtype='float32')
self.fp = K.variable(0, dtype='float32')
self.tn = K.variable(0, dtype='float32')
self.fn = K.variable(0, dtype='float32')
self.eps = eps
def reset_states(self):
K.set_value(self.tp, 0)
K.set_value(self.fn, 0)
K.set_value(self.fp, 0)
K.set_value(self.tn, 0)
def __call__(self, y_true, y_pred):
y_true, y_pred = _sanitize(y_true, y_pred, self.threshold)
true_pos, true_neg, false_pos, false_neg = _tp_tn_fp_fn(y_true, y_pred)
self.add_update(
K.update_add(self.tp, true_pos), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.tn, true_neg), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.fn, false_neg), inputs=[y_true, y_pred])
self.add_update(
K.update_add(self.fp, false_pos), inputs=[y_true, y_pred])
fpr = self.fp / (self.fp + self.tn + self.eps)
fnr = self.fn / (self.fn + self.tp + self.eps)
return K.sqrt(K.square(fnr) + K.square(fpr))
class ROC(object):
""" Computes the Receiver Operating Characteristic (ROC) curve, and
Area Under Curve for interpolated ROC, accumulating over the its calls.
Returns the optimal threshold for the specified metric
"""
fig_number = 0
def __init__(self):
self.inter_tprs = []
self.tprs = []
self.fprs = []
self.aucs = []
self.mean_tpr = None
self.mean_auc = None
self.std_tpr = None
self.std_auc = None
ROC.fig_number += 1
self.fig = ROC.fig_number
# self.func = metric
# self.argcmp = K.argmin
self.mean_fpr = np.linspace(0, 1, 100)
def __call__(self, y_true, proba):
fpr, tpr, thresholds = roc_curve(y_true, proba)
self.inter_tprs.append(interp(self.mean_fpr, fpr, tpr))
self.tprs.append(tpr)
self.fprs.append(fpr)
self.inter_tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
self.aucs.append(roc_auc)
# dist = K.get_session().run(self.func(1-tpr, fpr))
dist = K.get_session().run(_distance(1-tpr, fpr))
# dist = np.sqrt(np.square(1 - tpr) + np.square(fpr))
idx = np.argmin(dist)
return thresholds[idx], dist[idx]
def _mean(self):
self.mean_tpr = np.mean(self.inter_tprs, axis=0)
self.mean_auc = auc(self.mean_fpr, self.mean_tpr)
self.mean_tpr[-1] = 1.0
def _std(self):
self.std_tpr = np.std(self.inter_tprs, axis=0)
self.std_auc = np.std(self.aucs)
def mean(self):
if self.mean_tpr is None or self.mean_auc is None:
self._mean()
return self.mean_tpr, self.mean_auc
def std(self):
if self.std_tpr is None or self.std_auc is None:
self._std()
return self.std_tpr, self.std_auc
def plot(self, filename='roc-crossval.eps', std=True):
plt.figure(num=self.fig)
mean_tpr, mean_auc = self.mean()
std_tpr, std_auc = self.std()
if std == True:
for i, (fpr, tpr) in enumerate(zip(self.fprs, self.tprs)):
plt.plot(
fpr,
tpr,
lw=1,
alpha=0.3,
label='ROC fold %d (AUC = %0.2f)' % (i, self.aucs[i]))
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(
self.mean_fpr,
tprs_lower,
tprs_upper,
color='grey',
alpha=.2,
label=r'$\pm$ 1 std. dev.')
plt.plot(self.mean_fpr, mean_tpr, color='b',
label=r'ROC média (AUC = %0.2f $\pm$ %0.2f)' %
(mean_auc, std_auc),
lw=2, alpha=.8)
plt.plot([0, 1], [0, 1], linestyle='--', lw=1,
color='r', label='Identidade', alpha=.8)
ROC.label_plot()
if '.' not in filename:
filename += '.eps'
plt.savefig(filename, bbox_inches='tight')
plt.close()
@staticmethod
def label_plot():
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('Taxa de Falso Positivo')
plt.ylabel('Taxa de Verdadeiro Positivo')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")