-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpractica_individual.jl
815 lines (735 loc) · 36.2 KB
/
practica_individual.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import Pkg;
Pkg.add("DelimitedFiles");
Pkg.add("Statistics");
Pkg.add("Flux");
using Flux.Losses
using Statistics
using DelimitedFiles
using Random
dataset = readdlm("iris.data", ',');
inputs = dataset[:, 1:4];
#inputs:
inputs = dataset[:, 1:4];
#outputs deseadas:
targets = dataset[:, 5];
#vamos a convertir los datos al tipo correcto:
inputs = convert(Array{Float32,2}, inputs);
#@assert (size(inputs, 1) == size(targets, 1)) "Las matrices de entradas y salidas deseadas no tienen el mismo número de filas"
#targets = output_conversion(targets);
#ahora normalizamos la matriz por media
#inputs = normalizarmediastd.(inputs, mean_input, std_input)
# ----------------------------------------------P2----------------------------------------------
function oneHotEncoding(feature::AbstractArray{<:Any,1}, classes::AbstractArray{<:Any,1})
numclases = length(classes)
@assert (numclases > 1) "El número de elementos es demasiado pequeño"
if numclases == 2
resultado = Array{Bool,2}(undef, size(M, 1), 1)
resultado[:, 1] .= (M .== m_unique[1])
return resultado
elseif numclases > 2
resultado = Array{Bool,2}(undef, size(M, 1), S)
for n = 1:numclases
resultado[:, n] .= (feature .== classes[n])
end
return resultado
end
end
oneHotEncoding(feature::AbstractArray{<:Any,1}) = (classes = unique(feature); oneHotEncoding(feature, classes))
oneHotEncoding(feature::AbstractArray{Bool,1}) = feature;
#funciones que calculan valores
calculateMinMaxNormalizationParameters(dataset::AbstractArray{<:Real,2}) = (minimum(dataset, dims=1), maximum(dataset, dims=1))
calculateZeroMeanNormalizationParameters(dataset::AbstractArray{<:Real,2}) = (std(dataset, dims=1), mean(dataset, dims=1))
function normalizeMinMax!(dataset::AbstractArray{<:Real,2}, normalizationParameters::NTuple{2,AbstractArray{<:Real,2}})
min = normalizationParameters[1]
max = normalizationParameters[2]
dataset .-= min
dataset ./= (max .- min)
dataset[:, vec(min .== max)] .= 0 #aqui coges el dataset y en las columnas
end
normalizeMinMax!(dataset::AbstractArray{<:Real,2}) = normalizeMinMax!(dataset, calculateMinMaxNormalizationParameters(dataset))
normalizeMinMax(dataset::AbstractArray{<:Real,2}, normalizationParameters::NTuple{2,AbstractArray{<:Real,2}}) = normalizeMinMax!(copy(dataset), normalizationParameters)
normalizeMinMax(dataset::AbstractArray{<:Real,2}) = normalizeMinMax!(copy(dataset))
function normalizeZeroMean!(dataset::AbstractArray{<:Real,2}, normalizationParameters::NTuple{2,AbstractArray{<:Real,2}})
std = normalizationParameters[1]
mean = normalizationParameters[2]
dataset .-= mean.
dataset ./= std.dataset[:, vec(std .== 0)] .= 0
end
normalizeZeroMean!(dataset::AbstractArray{<:Real,2}) = normalizeZeroMean!(dataset, calculateZeroMeanNormalizationParameters(dataset))
normalizeZeroMean(dataset::AbstractArray{<:Real,2}, normalizationParameters::NTuple{2,AbstractArray{<:Real,2}}) = normalizeZeroMean!(copy(dataset), normalizationParameters)
normalizeZeroMean(dataset::AbstractArray{<:Real,2}) = normalizeZeroMean!(copy(dataset))
function classifyOutputs(outputs::AbstractArray{<:Real,2}; threshold::Real=0.5) #revisar
numColums = size(outputs, 2)
if numColums == 1
return (outputs .>= threshold) #convert(Array{Bool,2}, outputs.>=threshold)
else
(_, indicesMaxEachInstance) = findmax(outputs, dims=2)
outputsB = falses(size(outputs))
outputsB[indicesMaxEachInstance] .= true
return outputsB
end
end
accuracy(outputs::AbstractArray{Bool,1}, targets::AbstractArray{Bool,1}) = mean(outputs .== targets)
function accuracy(outputs::AbstractArray{Bool,2}, targets::AbstractArray{Bool,2})
numColumsOut = size(outputs, 2)
numColumsTar = size(targets, 2)
@assert (numColumsOut == numColumsTar) "El número de columnas debe ser la misma"
if numColumsOut == 1
return accuracy(outputs[:], targets[:])
else
classComparison = targets .== outputs
correctClassifications = all(classComparison, dims=2)
accuracy1 = mean(correctClassifications)
return accuracy1
end
end
accuracy(outputs::AbstractArray{<:Real,1}, targets::AbstractArray{Bool,1}; threshold::Real=0.5) = accuracy((outputs .>= threshold), targets)
accuracy(outputs::AbstractArray{<:Real,2}, targets::AbstractArray{Bool,2}; threshold::Real=0.5) = accuracy(classifyOutputs(outputs, threshold), targets)
function buildClassANN(numInputs::Int, topology::AbstractArray{<:Int,1}, numOutputs::Int)
ann = Chain()
numInputsLayer = numInputs
for numOutputsLayer = topology
ann = Chain(ann..., Dense(numInputsLayer, numOutputsLayer, σ))
numInputsLayer = numOutputsLayer
end
if numOutputs == 2
ann = Chain(ann..., Dense(numInputsLayer, numOutputs, σ))
else
ann = Chain(ann..., Dense(numInputsLayer, numOutputs, identity))
ann = Chain(ann..., softmax)
end
return ann
end
#comentarle al profe el uso de esta función
function buildClassANN(numInputs::Int, topology::AbstractArray{<:Int,1}, numOutputs::Int; transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)))
ann = Chain()
numInputsLayer = numInputs
init = 1
for numOutputsLayer = topology #podriamos usar solo una variable, mirar teams
ann = Chain(ann..., Dense(numInputsLayer, numOutputsLayer, transferFunctions[init]))
numInputsLayer = numOutputsLayer
init += 1
end
if numOutputs == 2
ann = Chain(ann..., Dense(numInputsLayer, numOutputs, σ))
else
ann = Chain(ann..., Dense(numInputsLayer, numOutputs, identity))
ann = Chain(ann..., softmax)
end
return ann
end
function trainClassANN(topology::AbstractArray{<:Int,1},
dataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}};
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01)
ann = buildClassANN(size(dataset[1], 2), topology, size(dataset[2], 2), transferFunctions)
inputs1 = dataset[1]'
targets1 = dataset[2]'
loss(x, y) = (size(y, 1) == 1) ? Losses.binarycrossentropy(ann(x), y) : Losses.crossentropy(ann(x), y)
trainingLos = Float64[]
trainingAcc = Float64[]
ciclo = 1
outputP = ann(inputs1) #caculamos salidas con la propia red sin entrenar
vlose = loss(inputs1, targets1)
vacc = accuracy(outputP, targets1)
push!(trainingLos, vlose)
push!(trainingAcc, vacc)
while (ciclo <= maxEpochs) && (vlose > minLoss)
Flux.train!(loss, params(ann), [(inputs1, targets1)], ADAM(learningRate))
outputP = ann(inputs1)
vlose = loss(inputs1, targets1)
vacc = accuracy(outputP, targets1)
ciclo += 1
push!(trainingLos, vlose)
push!(trainingAcc, vacc)
end
return (ann, trainingLosses, trainingAccuracies)
end
function trainClassANN(topology::AbstractArray{<:Int,1},
(inputs, targets)::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,1}};
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01)
trainClassANN(topology, (inputs, reshape(targets, size(targets, 1), 1)),
transferFunctions, maxEpochs, minLoss, learningRate)
end
# ----------------------------------------------P3------------------------------------------------
function holdOut(N::Int, P::Real)
@assert ((P >= 0.0) & (P <= 1))
indices = randperm(N)
ind = Int(round(N * P))
return (indices[1:ind], indices[ind:N])
end
function holdOut(N::Int, Pval::Real, Ptest::Real)
(trainval, test) = holdOut(N, Ptest)
(train, val) = holdOut(length(trainval), ((N * Pval) / length(trainval))) #reajustamos porcentajes
return (trainval(train), trainval(val), test)
end
function trainClassANN(topology::AbstractArray{<:Int,1},
trainingDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}};
validationDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}}=
(Array{eltype(trainingDataset[1]),2}(undef, 0, 0), falses(0, 0)),
testDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}}=
(Array{eltype(trainingDataset[1]),2}(undef, 0, 0), falses(0, 0)),
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01,
maxEpochsVal::Int=20, showText::Bool=false)
#Vamos a crear la RNA
ann = buildClassANN(size(trainingDataset[1], 2), topology, size(trainingDataset[2], 2), transferFunctions)
#Definimos la funcion de loss
loss(x, y) = (size(y, 1) == 1) ? Losses.binarycrossentropy(ann(x), y) : Losses.crossentropy(ann(x), y)
#Creamos los vectores a devolver
trainingL = Float64[]
trainingA = Float64[]
validationL = Float64[]
validationA = Float64[]
testL = Float64[]
testA = Float64[]
ciclo = 0
#como vamos a realizar lo mismo varias veces creamos la siguiente funcion:
function calcularParametros()
# Calculamos el loss en entrenamiento y test. Para ello hay que pasarlas matrices traspuestas (cada patron en una columna)
trainL = loss(trainingDataset[1]', trainingDataset[2]')
valL = 0.0
testL = 0.0
validationAcc = 1.0
testAcc = 1.0
trainingOutputs = ann(trainingDataset[1]')
trainingAcc = accuracy(trainingOutputs, trainingDataset[2]')
if (length(validationDataset[1]) > 0 && length(validationDataset[2]) > 0)
valL = loss(validationDataset[1]', validationDataset[2]')
validationOutputs = ann(validationDataset[1]')
validationAcc = accuracy(validationOutputs, validationDataset[2]')
end
if (length(testDataset[1]) > 0 && length(testDataset[2]) > 0)
testL = loss(testDataset[1]', testDataset[2]')
testOutputs = ann(testDataset[1]')
testAcc = accuracy(testOutputs, testDataset[2]')
end
# Mostramos por pantalla el resultado de este ciclo de entrenamiento si nos lo han indicado
if showText
println("Epoch ", numEpoch, ": Training loss: ", trainL, ",
accuracy: ", 100 * trainingAcc, " % - Validation loss: ", valL, ",
accuracy: ", 100 * validationAcc, " % - Test loss: ", testL, ", accuracy: ",
100 * testAcc, " %")
end
return (trainL, trainingAcc, valL, validationAcc, testL, testAcc)
end
(trainingLoss, trainingAccuracy, validationLoss, validationAccuracy, testLoss, testAccuracy) = calcularParametros()
push!(trainingL, trainingLoss)
push!(trainingA, trainingAccuracy)
if (length(validationDataset[1]) > 0 && length(validationDataset[2]) > 0)
push!(validationL, validationLoss)
push!(validationA, validationAccuracy)
end
if (length(testDataset[1]) > 0 && length(testDataset[2]) > 0)
push!(testL, testLoss)
push!(testA, testAccuracy)
end
numEpochsValidation = 0
bestValidationLoss = validationLoss
bestANN = deepcopy(ann)
while (ciclo < maxEpochs) && (trainingLoss > minLoss) && (numEpochsValidation < maxEpochsVal)
Flux.train!(loss, params(ann), [(trainingDataset[1]', trainingDataset[2]')], ADAM(learningRate))
ciclo += 1
(trainingLoss, trainingAccuracy, validationLoss, validationAccuracy, testLoss, testAccuracy) = calcularParametros()
push!(trainingLosses, trainingLoss)
push!(trainingAccuracies, trainingAccuracy)
if (length(validationDataset[1]) > 0 && length(validationDataset[2]) > 0)
push!(validationLosses, validationLoss)
push!(validationAccuracies, validationAccuracy)
end
if (length(testDataset[1]) > 0 && length(testDataset[2]) > 0)
push!(testLosses, testLoss)
push!(testAccuracies, testAccuracy)
end
if (length(validationDataset[1]) > 0 && length(validationDataset[2]) > 0)
if (validationLoss < bestValidationLoss)
bestValidationLoss = validationLoss
numEpochsValidation = 0
bestANN = deepcopy(ann)
else
numEpochsValidation += 1
end
else
bestANN = ann
end
end
return (bestANN, trainingLosses, validationLosses, testLosses, trainingAccuracies, validationAccuracies, testAccuracies)
end
function trainClassANN(topology::AbstractArray{<:Int,1},
trainingDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,1}};
validationDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,1}}=
(Array{eltype(trainingDataset[1]),1}(undef, 0, 0), falses(0)),
testDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,1}}=
(Array{eltype(trainingDataset[1]),1}(undef, 0, 0), falses(0)),
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01,
maxEpochsVal::Int=20, showText::Bool=false)
trainClassANN(topology, (trainingDataset[1], reshape(trainingDataset[2], size(trainingDataset[2], 1), 1)),
(validationDataset[1], reshape(validationDataset[2], size(validationDataset[2], 1), 1)),
(testDataset[1], reshape(testDataset[2], size(testDataset[2], 1), 1)),
transferFunctions, maxEpochs, minLoss, learningRate, maxEpochsVal, showText)
end
# ---------------------------------------P4.1-----------------------------------------
function confusionMatrix(outputs::AbstractArray{Bool,1}, targets::AbstractArray{Bool,1})
@assert (length(outputs) == length(targets))
acc = accuracy(outputs, targets) # Precision, calcula el porcentaje de aciertos
tasafallo = 1.0 - acc #tasa de fallo, es el porcentaje de fallos
sensibilidad = mean(outputs[targets]) # Sensibilidad
especifidad = mean(.!outputs[.!targets]) # Especificidad
precision = mean(targets[outputs]) # Valor predictivo positivo
NPV = mean(.!targets[.!outputs]) # Valor predictivo negativo
if isnan(recall) && isnan(precision) # Los VN son el 100% de los patrones
sensibilidad = 1.0
precision = 1.0
elseif isnan(specificity) && isnan(NPV) # Los VP son el 100% de los patrones
especifidad = 1.0
NPV = 1.0
end
#Si no hemos podido calcular alguno, estos toman el valor 0
sensibilidad = isnan(sensibilidad) ? 0.0 : sensibilidad
especifidad = isnan(especifidad) ? 0.0 : especifidad
precision = isnan(precision) ? 0.0 : precision
NPV = isnan(NPV) ? 0.0 : NPV
#Ahora calculamos F1-SCORE
F1 = (sensibilidad == precision == 0.0) ? 0.0 : 2 * (sensibilidad * precision) / (sensibilidad + precision) #calculamos la media harmonica
#ahora cremoas la matriz
confMatrix = Array{Int64,2}(undef, 2, 2)
confMatrix[1, 1] = sum(.!targets .& .!outputs) # VN
confMatrix[1, 2] = sum(.!targets .& outputs) # FP
confMatrix[2, 1] = sum(targets .& .!outputs) # FN
confMatrix[2, 2] = sum(targets .& outputs) # VP
#devolvemos todo
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix)
end
confusionMatrix(outputs::AbstractArray{<:Real,1}, targets::AbstractArray{Bool,1}; threshold::Real=0.5) = confusionMatrix((outputs .>= threshold), targets);
function printConfusionMatrix(outputs::AbstractArray{Bool,1},
targets::AbstractArray{Bool,1}; weighted::Bool=true)
(acc, errorRate, sensibilidad, especifidad, precision, NPV, F1, confMatrix) = confusionMatrix(outputs, targets)
println("La precision es:", acc)
println("La tasa de fallo es:", errorRate)
println("La sensibilidad es:", sensibilidad)
println("La especifidad es:", especifidad)
println("La VPP es:", precision)
println("La VPV es:", VPV)
println("El f1-score es:", F1)
for i in 1:size(confMatrix, 1)[1]
print(confMatrix[i, :])
print("\n")
end
end
function printConfusionMatrix(outputs::AbstractArray{<:Real,1}, targets::AbstractArray{Bool,1}; weighted::Bool=true)
(acc, errorRate, sensibilidad, especifidad, precision, NPV, F1, confMatrix) = confusionMatrix(outputs, targets)
println("La precision es:", acc)
println("La tasa de fallo es:", errorRate)
println("La sensibilidad es:", sensibilidad)
println("La especifidad es:", especifidad)
println("La VPP es:", precision)
println("La VPV es:", VPV)
println("El f1-score es:", F1)
for i in 1:size(confMatrix, 1)[1]
print(confMatrix[i, :])
print("\n")
end
end
# --------------------------------------------P4.2-----------------------------------------
# Elegir una oneVSall, la segunda es la mas adecuada
function oneVSall(inputs::Array{Float64,2}, targets::Array{Bool,2})
numClasses = size(targets, 2)
# Nos aseguramos de que hay mas de dos clases
@assert(numClasses > 2)
outputs = Array{Float64,2}(undef, size(inputs, 1), numClasses)
for numClass in 1:numClasses
model = fit(inputs, targets[:, [numClass]])
outputs[:, numClass] .= model(inputs)
end
# Aplicamos la funcion softmax
outputs = collect(softmax(outputs')')
# Convertimos a matriz de valores booleanos
outputs = classifyOutputs(outputs)
classComparison = (targets .== outputs)
correctClassifications = all(classComparison, dims=2)
return mean(correctClassifications)
end;
function oneVSall(model, inputs::AbstractArray{<:Real,2}, targets::AbstractArray{Bool,2})
numClasses = size(targets, 2)
# Nos aseguramos de que hay mas de dos clases
@assert(numClasses > 2)
outputs = Array{Float32,2}(undef, numInstances, numClasses)
for numClass in 1:numClasses
newModel = deepcopy(model)
fit!(newModel, inputs, targets[:, [numClass]])
outputs[:, numClass] .= newModel(inputs)
end
outputs = softmax(outputs')'
vmax = maximum(outputs, dims=2)
outputs = (outputs .== vmax)
end
function confusionMatrix(outputs::AbstractArray{Bool,2}, targets::AbstractArray{Bool,2}; weighted::Bool=true)
@assert size(outputs) == size(targets)
acc = accuracy(vec(outputs), vec(targets))
errorRate = 1 - acc
recall = mean(outputs[targets])
specificity = mean(.!outputs[.!targets])
precision = mean(targets[outputs])
NPV = mean(.!targets[.!outputs])
if isnan(recall) && isnan(precision)
recall = 1.0
precision = 1.0
elseif isnan(specificity) && isnan(NPV)
specificity = 1.0
NPV = 1.0
end
recall = isnan(recall) ? 0.0 : recall
specificity = isnan(specificity) ? 0.0 : specificity
precision = isnan(precision) ? 0.0 : precision
NPV = isnan(NPV) ? 0.0 : NPV
F1 = (recall == precision == 0.0) ? 0.0 : 2 * (recall * precision) / (recall + precision)
confMatrix = Array{Int64}(undef, 2, 2)
confMatrix[1, 1] = sum(.!targets .& .!outputs) # TN
confMatrix[1, 2] = sum(targets .& outputs) # FP
confMatrix[2, 1] = sum(targets .& .!outputs) # FN
confMatrix[2, 2] = sum(targets .& outputs) # TP
if weighted
wTP = sum(targets .& outputs, dims=2)
wFN = sum(targets .& .!outputs, dims=2)
wFP = sum(.!targets .& outputs, dims=1)
wTN = sum(.!targets .& .!outputs, dims=1)
wAccuracy = sum(wTP) / (sum(wTP) + sum(wFN))
wErrorRate = 1 - wAccuracy
wPrecision = sum(wTP) / (sum(wTP) + sum(wFP))
wRecall = sum(wTP) / (sum(wTP) + sum(wFN))
wF1 = 2 * (wPrecision * wRecall) / (wPrecision + wRecall)
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix, wAccuracy, wErrorRate, wPrecision, wRecall, wF1)
end
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix)
end
# Se a añadido la linea outputs = round.(outputs)
function confusionMatrix(outputs::AbstractArray{<:Real,2}, targets::AbstractArray{Bool,2}; weighted::Bool=true)
@assert size(outputs) == size(targets)
outputs = round.(outputs)
acc = accuracy(vec(outputs), vec(targets))
errorRate = 1 - acc
recall = mean(outputs[targets])
specificity = mean(.!outputs[.!targets])
precision = mean(targets[outputs])
NPV = mean(.!targets[.!outputs])
if isnan(recall) && isnan(precision)
recall = 1.0
precision = 1.0
elseif isnan(specificity) && isnan(NPV)
specificity = 1.0
NPV = 1.0
end
recall = isnan(recall) ? 0.0 : recall
specificity = isnan(specificity) ? 0.0 : specificity
precision = isnan(precision) ? 0.0 : precision
NPV = isnan(NPV) ? 0.0 : NPV
F1 = (recall == precision == 0.0) ? 0.0 : 2 * (recall * precision) / (recall + precision)
confMatrix = Array{Int64}(undef, 2, 2)
confMatrix[1, 1] = sum(.!targets .& .!outputs) # TN
confMatrix[1, 2] = sum(targets .& outputs) # FP
confMatrix[2, 1] = sum(targets .& .!outputs) # FN
confMatrix[2, 2] = sum(targets .& outputs) # TP
if weighted
wTP = sum(targets .& outputs, dims=2)
wFN = sum(targets .& .!outputs, dims=2)
wFP = sum(.!targets .& outputs, dims=1)
wTN = sum(.!targets .& .!outputs, dims=1)
wAccuracy = sum(wTP) / (sum(wTP) + sum(wFN))
wErrorRate = 1 - wAccuracy
wPrecision = sum(wTP) / (sum(wTP) + sum(wFP))
wRecall = sum(wTP) / (sum(wTP) + sum(wFN))
wF1 = 2 * (wPrecision * wRecall) / (wPrecision + wRecall)
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix, wAccuracy, wErrorRate, wPrecision, wRecall, wF1)
end
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix)
end
# Convertimos los outputs y los targets en vectores booleanos y cambiamos el calculo ponderado para que use dims=1
function confusionMatrix(outputs::AbstractArray{<:Any,1}, targets::AbstractArray{<:Any,1}; weighted::Bool=true)
@assert length(outputs) == length(targets)
outputs = convert(Vector{Bool}, outputs)
targets = convert(Vector{Bool}, targets)
acc = accuracy(outputs, targets)
errorRate = 1 - acc
recall = mean(outputs[targets])
specificity = mean(.!outputs[.!targets])
precision = mean(targets[outputs])
NPV = mean(.!targets[.!outputs])
if isnan(recall) && isnan(precision)
recall = 1.0
precision = 1.0
elseif isnan(specificity) && isnan(NPV)
specificity = 1.0
NPV = 1.0
end
recall = isnan(recall) ? 0.0 : recall
specificity = isnan(specificity) ? 0.0 : specificity
precision = isnan(precision) ? 0.0 : precision
NPV = isnan(NPV) ? 0.0 : NPV
F1 = (recall == precision == 0.0) ? 0.0 : 2 * (recall * precision) / (recall + precision)
confMatrix = Array{Int64}(undef, 2, 2)
confMatrix[1, 1] = sum(.!targets .& .!outputs) # TN
confMatrix[1, 2] = sum(targets .& outputs) # FP
confMatrix[2, 1] = sum(targets .& .!outputs) # FN
confMatrix[2, 2] = sum(targets .& outputs) # TP
if weighted
wTP = sum(targets .& outputs, dims=1)
wFN = sum(targets .& .!outputs, dims=1)
wFP = sum(.!targets .& outputs, dims=1)
wTN = sum(.!targets .& .!outputs, dims=1)
wAccuracy = sum(wTP) / (sum(wTP) + sum(wFN))
wErrorRate = 1 - wAccuracy
wPrecision = sum(wTP) / (sum(wTP) + sum(wFP))
wRecall = sum(wTP) / (sum(wTP) + sum(wFN))
wF1 = 2 * (wPrecision * wRecall) / (wPrecision + wRecall)
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix, wAccuracy, wErrorRate, wPrecision, wRecall, wF1)
end
return (acc, errorRate, recall, specificity, precision, NPV, F1, confMatrix)
end
function printConfusionMatrix(outputs::AbstractArray{Bool,2}, targets::AbstractArray{Bool,2}; weighted::Bool=true)
(acc, errorRate, sensibilidad, especifidad, precision, NPV, F1, confMatrix, wAccuracy, wErrorRate, wPrecision, wRecall, wF1) = confusionMatrix(outputs, targets)
println("La precisión es:", acc)
println("La tasa de error es:", errorRate)
println("La sensibilidad es:", sensibilidad)
println("La especificidad es:", especifidad)
println("La VPP es:", precision)
println("La VPV es:", NPV)
println("El f1-score es:", F1)
for i in 1:size(confMatrix, 1)[1]
print(confMatrix[i, :])
print("\n")
end
return (acc, errorRate, recall, specificity, precision, NPV, F1,
confMatrix)
end
printConfusionMatrix(outputs::AbstractArray{<:Real,2}, targets::AbstractArray{Bool,2};
weighted::Bool=true) = printConfusionMatrix(classifyOutputs(outputs), targets; weighted=weighted)
# ----------------------------------------P5-----------------------------------------
using Random
using Random: seed!
function crossvalidation(N::Int64, k::Int64)
indices = repeat(1:k, Int64(ceil(N / k)))
indices = indices[1:N]
shuffle!(indices)
return indices
end
function crossvalidation(targets::AbstractArray{Bool,2}, k::Int64)
N = size(targets, 1)
indices = repeat(1:k, Int64(ceil(N / k)))
indices = indices[1:N]
shuffle!(indices)
subIndices = fill(0, N)
for i in 1:k
classIndices = findall(targets[:, i])
subSize = Int64(ceil(length(classIndices) / k))
subIndices[classIndices] = indices[(i-1)*subSize+1:min(i * subSize, length(classIndices))]
end
return subIndices
end
function crossvalidation(targets::AbstractArray{Bool,2}, k::Int64)
N = size(targets, 1)
indices = fill(0, N)
for i in 1:size(targets, 2)
classIndices = findall(targets[:, i])
subSize = Int64(ceil(length(classIndices) / k))
indices[classIndices] .= crossvalidation(ones(length(classIndices)), k)[1:length(classIndices)]
end
return indices
end
# La función realiza la codificación one-hot de un vector de etiquetas,
# creando una matriz booleana donde cada columna representa una etiqueta y las filas son los patrones,
# y luego aplica la validación cruzada estratificada.
function crossvalidation(targets::AbstractArray{<:Any,1}, k::Int64)
N = length(targets)
classDict = Dict(unique(targets) .=> 1:length(unique(targets)))
targetsNumeric = [classDict[t] for t in targets]
targetsBool = falses(N, length(classDict))
for i in 1:length(classDict)
targetsBool[:, i] = targetsNumeric .== i
end
indices = crossvalidation(targetsBool, k)
return indices
end
function trainClassANN(topology::AbstractArray{<:Int,1},
trainingDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}},
kFoldIndices::Array{Int64,1};
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01,
numRepetitionsANNTraining::Int=1, validationRatio::Real=0.0,
maxEpochsVal::Int=20)
end
function trainClassANN(topology::AbstractArray{<:Int,1},
trainingDataset::Tuple{AbstractArray{<:Real,2},AbstractArray{Bool,2}},
kFoldIndices::Array{Int64,1};
transferFunctions::AbstractArray{<:Function,1}=fill(σ, length(topology)),
maxEpochs::Int=1000, minLoss::Real=0.0, learningRate::Real=0.01,
numRepetitionsANNTraining::Int=1, validationRatio::Real=0.0,
maxEpochsVal::Int=20)
end
# ----------------------------------------P6-----------------------------------------
# Pkg.add("ScikitLearn")) y los modelos (svm, tree, neighbors)
using ScikitLearn
@sk_import svm:SVC
@sk_import tree:DecisionTreeClassifier
@sk_import neighbors:KNeighborsClassifier
#model = SVC(kernel="rbf", degree=3, gamma=2, C=1);
#model = DecisionTreeClassifier(max_depth=4, random_state=1)
#model = KNeighborsClassifier(3);
#Ejemplo de uso (las salidas son un vector)
#fit!(model, trainingInputs, trainingTargets);
#Una vez entrenado se pueden predecir las soluciones usando predict
#testOutputs = predict(model, testInputs);
function modelCrossValidation(modelType::Symbol, modelHyperparameters::Dict,
inputs::AbstractArray{<:Real,2}, targets::AbstractArray{<:Any,1},
crossValidationIndices::Array{Int64,1})
# Verificar que la cantidad de patrones de entrada coincide con la cantidad de objetivos.
@assert(size(inputs, 1) == length(targets))
# Determinar las clases únicas de los objetivos.
classes = unique(targets)
# Codificar los objetivos de salida deseados si el modelo es una red neuronal artificial (ANN).
if modelType == :ANN
targets = oneHotEncoding(targets, classes)
end
# Obtener el número de pliegues.
numFolds = maximum(crossValidationIndices)
# Inicializar vectores para almacenar las métricas de evaluación del modelo.
testAccuracies = Array{Float64,1}(undef, numFolds)
testF1 = Array{Float64,1}(undef, numFolds)
# Para cada pliegue, entrenar y evaluar el modelo.
for numFold in 1:numFolds
# Dividir los datos en conjuntos de entrenamiento y prueba.
trainingInputs = inputs[crossValidationIndices.!=numFold, :]
testInputs = inputs[crossValidationIndices.==numFold, :]
trainingTargets = targets[crossValidationIndices.!=numFold]
testTargets = targets[crossValidationIndices.==numFold]
# Entrenar y evaluar el modelo en función de su tipo.
if (modelType == :SVM) || (modelType == :DecisionTree) || (modelType == :kNN)
model = train_and_evaluate_non_ann_model(modelType, modelHyperparameters, trainingInputs, trainingTargets, testInputs, testTargets)
else
@assert(modelType == :ANN)
model = train_and_evaluate_ann_model(modelHyperparameters, trainingInputs, trainingTargets, testInputs, testTargets)
end
# Calcular y almacenar las métricas para el pliegue actual.
(acc, _, _, _, _, _, F1, _) = confusionMatrix(model[:testOutputs], testTargets)
testAccuracies[numFold] = acc
testF1[numFold] = F1
println("Results in test in fold ", numFold, "/", numFolds, ": accuracy: ", 100 * testAccuracies[numFold], " %, F1: ", 100 * testF1[numFold], " %")
end
# Imprimir las métricas promedio para todos los pliegues.
println(modelType, ": Average test accuracy on a ", numFolds, "-fold crossvalidation: ", 100 * mean(testAccuracies), ", with a standard desviation of ", 100 * std(testAccuracies))
println(modelType, ": Average test F1 on a ", numFolds, "-fold crossvalidation: ", 100 * mean(testF1), ", with a standard desviation of ", 100 * std(testF1))
# Devolver una tupla que contiene las métricas promedio y la desviación estándar.
return (mean(testAccuracies), std(testAccuracies), mean(testF1), std(testF1))
end
# Función para entrenar y evaluar modelos de aprendizaje automático no basados en redes neuronales artificiales.
function train_and_evaluate_non_ann_model(modelType, modelHyperparameters, trainingInputs, trainingTargets, testInputs, testTargets)
if modelType == :SVM
# Crear un modelo de SVM con los hiperparámetros especificados.
model = SVC(
kernel=modelHyperparameters["kernel"],
degree=modelHyperparameters["kernelDegree"],
gamma=modelHyperparameters["kernelGamma"],
C=modelHyperparameters["C"]
)
elseif modelType == :DecisionTree
# Crear un modelo de árbol de decisión con el parámetro de profundidad máxima especificado.
model = DecisionTreeClassifier(max_depth=modelHyperparameters["maxDepth"], random_state=1)
elseif modelType == :kNN
# Crear un modelo kNN con el número de vecinos especificado.
model = KNeighborsClassifier(modelHyperparameters["numNeighbors"])
end
# Ajustar el modelo a los datos de entrenamiento.
model = fit!(model, trainingInputs, trainingTargets)
# Hacer predicciones con el modelo sobre los datos de prueba.
testOutputs = predict(model, testInputs)
# Devolver un diccionario que contiene las predicciones del modelo sobre los datos de prueba.
return Dict([(:testOutputs, testOutputs)])
end
# Función para entrenar y evaluar modelos de redes neuronales artificiales (ANN).
function train_and_evaluate_ann_model(modelHyperparameters, trainingInputs, trainingTargets, testInputs, testTargets)
# Obtener el número de ejecuciones a realizar.
numExecutions = modelHyperparameters["numExecutions"]
# Inicializar un vector para almacenar las exactitudes de las diferentes ejecuciones.
testAccuraciesEachRepetition = Array{Float64,1}(undef, numExecutions)
for numTraining in 1:numExecutions
# Realizar la validación cruzada si el parámetro "validationRatio" es mayor que cero.
if modelHyperparameters["validationRatio"] > 0
# Dividir los datos de entrenamiento en conjuntos de entrenamiento y validación.
(trainingIndices, validationIndices) = holdOut(size(trainingInputs, 1),
modelHyperparameters["validationRatio"] * size(trainingInputs, 1) / size(inputs, 1))
# Entrenar una red neuronal artificial con los datos de entrenamiento y validación, y evaluarla en los datos de prueba.
ann, = trainClassANN(modelHyperparameters["topology"],
trainingInputs[trainingIndices, :],
trainingTargets[trainingIndices, :],
trainingInputs[validationIndices, :],
trainingTargets[validationIndices, :],
testInputs, testTargets;
maxEpochs=modelHyperparameters["maxEpochs"],
learningRate=modelHyperparameters["learningRate"],
maxEpochsVal=modelHyperparameters["maxEpochsVal"])
else
# Entrenar una red neuronal artificial con todos los datos de entrenamiento, y evaluarla en los datos de prueba.
ann, = trainClassANN(modelHyperparameters["topology"],
trainingInputs, trainingTargets,
testInputs, testTargets;
maxEpochs=modelHyperparameters["maxEpochs"],
learningRate=modelHyperparameters["learningRate"])
end
# Calcular la exactitud y la F1 para cada ejecución.
(testAccuraciesEachRepetition[numTraining], _, _, _, _, _,
testF1EachRepetition[numTraining], _) = confusionMatrix(collect(ann(testInputs')'), testTargets)
end
# Calcular la exactitud y la F1 promedio para todas las ejecuciones.
acc = mean(testAccuraciesEachRepetition)
F1 = mean(testF1EachRepetition)
# Devolver un diccionario que contiene las predicciones del modelo sobre los datos de prueba, así como la exactitud y la F1 promedio sobre todas las ejecuciones.
return Dict([(:testOutputs, collect(ann(testInputs')')), (:acc, acc), (:F1, F1)])
end
# ---------------------------------------------------Probar P6-------------------------------------------------
# Fijamos la semilla aleatoria para poder repetir los experimentos
seed!(1);
numFolds = 10;
# Parametros principales de la RNA y del proceso de entrenamiento
topology = [4, 3]; # Dos capas ocultas con 4 neuronas la primera y 3 la segunda
learningRate = 0.01; # Tasa de aprendizaje
numMaxEpochs = 1000; # Numero maximo de ciclos de entrenamiento
validationRatio = 0; # Porcentaje de patrones que se usaran para validacion. Puede ser 0, para no usar validacion
maxEpochsVal = 6; # Numero de ciclos en los que si no se mejora el loss en el conjunto de validacion, se para el entrenamiento
numRepetitionsAANTraining = 50; # Numero de veces que se va a entrenar la RNA para cada fold por el hecho de ser no determinístico el entrenamiento
# Parametros del SVM
kernel = "rbf";
kernelDegree = 3;
kernelGamma = 2;
C = 1;
# Parametros del arbol de decision
maxDepth = 4;
# Parapetros de kNN
numNeighbors = 3;
# Cargamos el dataset
dataset = readdlm("iris.data", ',');
# Preparamos las entradas y las salidas deseadas
inputs = convert(Array{Float64,2}, dataset[:, 1:4]);
targets = dataset[:, 5];
# Normalizamos las entradas, a pesar de que algunas se vayan a utilizar para test
normalizeMinMax!(inputs);
# Entrenamos las RR.NN.AA.
modelHyperparameters = Dict();
modelHyperparameters["topology"] = topology;
modelHyperparameters["learningRate"] = learningRate;
modelHyperparameters["validationRatio"] = validationRatio;
modelHyperparameters["numExecutions"] = numRepetitionsAANTraining;
modelHyperparameters["maxEpochs"] = numMaxEpochs;
modelHyperparameters["maxEpochsVal"] = maxEpochsVal;
modelCrossValidation(:ANN, modelHyperparameters, inputs, targets, numFolds);
# Entrenamos las SVM
modelHyperparameters = Dict();
modelHyperparameters["kernel"] = kernel;
modelHyperparameters["kernelDegree"] = kernelDegree;
modelHyperparameters["kernelGamma"] = kernelGamma;
modelHyperparameters["C"] = C;
modelCrossValidation(:SVM, modelHyperparameters, inputs, targets, numFolds);
# Entrenamos los arboles de decision
modelCrossValidation(:DecisionTree, Dict("maxDepth" => maxDepth), inputs, targets, numFolds);
# Entrenamos los kNN
modelCrossValidation(:kNN, Dict("numNeighbors" => numNeighbors), inputs, targets, numFolds);