-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_human.py
105 lines (79 loc) · 3.18 KB
/
test_human.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import numpy as np
from PIL import Image
from tqdm import tqdm
def main():
val_image_paths, val_label_paths = init_path()
val_hist = compute_hist(val_image_paths, val_label_paths)
show_result(val_hist)
def init_path():
val_prediction_dir = 'D:/Datasets/LIP/output/JPPNet-s2/parsing/val/'
# val_prediction_dir = 'D:/Datasets/LIP/output/JPPNet-s2-pretrained/parsing/val'
val_id_list = 'D:/Datasets/LIP/list/val_id.txt'
val_gt_dir = 'D:/Datasets/LIP/validation/labels/'
val_gt_paths = []
val_prediction_paths = []
f = open(val_id_list, 'r')
for line in f:
val = line.strip("\n")
val_gt_paths.append(val_gt_dir + val + '.png')
val_prediction_paths.append(val_prediction_dir + val + '.png')
return val_prediction_paths, val_gt_paths
def fast_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n)
def compute_hist(images, labels):
n_cl = 20
hist = np.zeros((n_cl, n_cl))
for img_path, label_path in tqdm(zip(images, labels)):
try:
label = Image.open(label_path)
label_array = np.array(label, dtype=np.int32)
image = Image.open(img_path)
image_array = np.array(image, dtype=np.int32)
gtsz = label_array.shape
imgsz = image_array.shape
if not gtsz == imgsz:
image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS)
image_array = np.array(image, dtype=np.int32)
hist += fast_hist(label_array, image_array, n_cl)
except Exception as err:
print(err)
return hist
def show_result(hist):
classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes',
'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt',
'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe',
'rightShoe']
# num of correct pixels
num_cor_pix = np.diag(hist)
# num of gt pixels
num_gt_pix = hist.sum(1)
print('=' * 50)
# @evaluation 1: overall accuracy
acc = num_cor_pix.sum() / hist.sum()
print('>>>', 'overall/pixel accuracy', acc)
print('-' * 50)
# @evaluation 2: mean accuracy & per-class accuracy
print('Accuracy for each class (pixel accuracy):')
for i in range(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i]))
acc = num_cor_pix / num_gt_pix
print('>>>', 'mean accuracy', np.nanmean(acc))
print('-' * 50)
# @evaluation 3: mean IU & per-class IU
print('IoU for each class:')
union = num_gt_pix + hist.sum(0) - num_cor_pix
for i in range(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
print('>>>', 'mean IoU', np.nanmean(iu))
print('-' * 50)
# @evaluation 4: frequency weighted IU
freq = num_gt_pix / hist.sum()
print('>>>', 'Freq Weighted IoU', (freq[freq > 0] * iu[freq > 0]).sum())
print('=' * 50)
# Save confusion matrix
np.savetxt('./output/JPPNet-s2_CM.csv', hist, fmt='%4i', delimiter=',')
if __name__ == '__main__':
main()