-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_human_reasoning.py
173 lines (141 loc) · 6.67 KB
/
test_human_reasoning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# test_human_reasoning.py
import numpy as np
import json
from datetime import datetime
from pathlib import Path
from data import SudokuDataGenerator
from visual_recognition import VisualScanner, ScanPattern
from advanced_learning import AdvancedLearningSystem
from strategy_selector import StrategySelector
from natural_language_explainer import NaturalLanguageExplainer
from solver import SudokuSolver
class HumanReasoningTester:
def __init__(self):
self.generator = SudokuDataGenerator()
self.visual_scanner = VisualScanner()
self.learning_system = AdvancedLearningSystem()
self.strategy_selector = StrategySelector()
self.explainer = NaturalLanguageExplainer()
self.solver = None
def test_visual_recognition(self, puzzle: np.ndarray):
"""Test visual pattern recognition capabilities."""
print("\n=== Testing Visual Recognition ===")
# Initialize solver to get candidates
self.solver = SudokuSolver(puzzle)
candidates = self.solver.get_all_candidates()
# Test different scanning patterns
for pattern in ScanPattern:
print(f"\nTesting {pattern.name} scanning pattern:")
scan_result = self.visual_scanner.scan_grid(puzzle, candidates, pattern=pattern)
print(f"- Eye movements: {len(scan_result.fixation_points)} fixation points")
print(f"- Detected patterns: {len(scan_result.patterns)}")
print(f"- Focus areas: {len(scan_result.focus_areas)}")
# Show sample pattern descriptions
if scan_result.patterns:
print("\nSample pattern descriptions:")
for visual_pattern in scan_result.patterns[:2]:
# Try both technical and natural language descriptions
technical_desc = visual_pattern.get_description()
natural_desc = self.explainer.explain_visual_pattern(visual_pattern)
print(f"Technical: {technical_desc}")
print(f"Natural: {natural_desc}\n")
def test_strategy_selection(self, puzzle: np.ndarray):
"""Test strategy selection process."""
print("\n=== Testing Strategy Selection ===")
if self.solver is None:
self.solver = SudokuSolver(puzzle)
candidates = self.solver.get_all_candidates()
scan_result = self.visual_scanner.scan_grid(puzzle, candidates)
# Test strategy selection over multiple steps
for step_num in range(3): # Test first 3 moves
print(f"\nStep {step_num + 1}:")
strategy = self.strategy_selector.select_next_strategy(
puzzle, self.solver.available_strategies
)
print(f"Selected Strategy: {strategy.value}")
explanation = self.explainer.explain_strategy_selection(
strategy, scan_result.patterns
)
print(f"Reasoning: {explanation}")
# Apply strategy and update puzzle state
step, new_puzzle = self.solver.solve_step(strategy)
if step is None:
print("No more steps possible")
break
puzzle = new_puzzle
candidates = self.solver.get_all_candidates()
scan_result = self.visual_scanner.scan_grid(puzzle, candidates)
# Update learning
self.learning_system.update_learning(
puzzle,
self.solver.get_all_candidates(),
strategy.value,
success=True,
time_taken=1.0
)
def test_learning_system(self):
"""Test learning and adaptation capabilities."""
print("\n=== Testing Learning System ===")
# Generate and solve multiple puzzles
difficulties = ['easy', 'medium', 'hard']
for difficulty in difficulties:
print(f"\nTesting {difficulty} puzzle:")
puzzle, solution = self.generator.generate_puzzle(difficulty)
# Solve puzzle and gather learning data
solver = SudokuSolver(puzzle)
start_time = datetime.now()
success, final_grid, explanations = solver.solve()
time_taken = (datetime.now() - start_time).total_seconds()
# Update learning system
self.learning_system.update_learning(
puzzle,
solver.get_all_candidates(),
'test_strategy',
success=success,
time_taken=time_taken
)
# Show learning progress
learning_state = self.learning_system.get_learning_state()
print("\nLearning Progress:")
print(json.dumps(learning_state, indent=2))
def test_natural_explanations(self, puzzle: np.ndarray):
"""Test natural language explanations."""
print("\n=== Testing Natural Explanations ===")
if self.solver is None:
self.solver = SudokuSolver(puzzle)
candidates = self.solver.get_all_candidates()
scan_result = self.visual_scanner.scan_grid(puzzle, candidates)
# Test pattern explanations
if scan_result.patterns:
print("\nPattern Explanations:")
for pattern in scan_result.patterns[:2]:
explanation = self.explainer.explain_visual_pattern(pattern)
print(f"- {explanation}")
# Test solving step explanations
print("\nSolving Step Explanations:")
for step_num in range(2): # Test first 2 steps
step, current_grid = self.solver.solve_step()
if step is None:
print("No more steps possible")
break
explanation = self.explainer.explain_solving_step(step, self.solver.grid.cells)
print(f"Step {step_num + 1}: {explanation}")
def run_full_test(self):
"""Run a complete test of all human reasoning components."""
print("Starting Human Reasoning System Test")
print("===================================")
# Generate test puzzle
puzzle, solution = self.generator.generate_puzzle('medium')
print("\nTest puzzle generated:")
print(puzzle)
# Run component tests
self.test_visual_recognition(puzzle)
self.test_strategy_selection(puzzle)
self.test_learning_system()
self.test_natural_explanations(puzzle)
print("\nTest completed!")
def main():
tester = HumanReasoningTester()
tester.run_full_test()
if __name__ == "__main__":
main()