-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspsa_acrobot.py
192 lines (162 loc) · 5.48 KB
/
spsa_acrobot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import pickle
import copy
import gym
import matplotlib.pyplot as plt
import time
from gym import wrappers
def sigmoid(inpt):
return 1.0 / (1 + np.exp(-1 * inpt))
def leaky_relu(x):
#result = inpt
#result[inpt < 0] = 0.01*inpt
leaky_way1 = np.where(x > 0, x, x * 0.01)
return leaky_way1
def relu(inpt):
result = inpt
result[inpt < 0] = 0
return result
def softmax(x):
f = np.exp(x - np.max(x)) # shift values
return f / f.sum(axis=0)
def normalize(X):
X -= np.mean(X, axis=0)
X /= np.std(X, axis=0)
return X
def train_network(weights, envv, activation="sigmoid"):
episodic_rewards = 0
data_inputs = envv.reset()
state = data_inputs
done = False
while not done:
r1 = []
r1 = np.expand_dims(np.append(normalize(state),1), axis=0)
for idx in range(len(weights) - 1):
curr_weights = weights[idx]
r1 = np.matmul(r1, curr_weights)
r1 = drop_out(0.5,r1)
if activation == "relu":
r1 = leaky_relu(r1)
elif activation == "sigmoid":
r1 = sigmoid(r1)
curr_weights = weights[-1]
r1 = np.matmul(r1, curr_weights)
r1 = softmax(r1[0])
predicted_label = np.random.choice(3, 1, p=r1)
next_state, reward, done, info = envv.step(predicted_label[0])
state = next_state
episodic_rewards = episodic_rewards+ reward
return episodic_rewards
def delta(var):
delta1 = []
for i in range(len(var)):
d = 2 * np.round(np.random.rand(var[i].shape[0], var[i].shape[1])) - 1
delta1.append(d)
return delta1
def perturb_weights(var, delta2, ck):
var1 = []
for i in range(len(var)):
v = var[i] + ck * delta2[i]
var1.append(v)
return var1
def soft_updates(delta2, ck, diff):
g = []
for i in range(len(delta2)):
g1=diff / (2 * ck * delta2[i])
g.append(g1)
return g
def update_weights(var, delta2, ck, diff):
var2 = []
for i in range(len(var)):
v = var[i] + diff / (2 * ck * delta2[i])
var2.append(v)
return var2
def weight_initialization(input_shape,HL1_neurons, output_neurons, init_type):
input_HL1_weights=[]
HL2_output_weights = []
if (init_type == "xavier"):
input_HL1_weights = np.random.randn(input_shape, HL1_neurons)/np.sqrt(input_shape / 2.)
HL2_output_weights = np.random.randn(HL1_neurons, output_neurons)/np.sqrt(HL1_neurons / 2.)
#weights = np.array([input_HL1_weights, HL2_output_weights])
elif(init_type =="uniform"):
input_HL1_weights = np.random.uniform(low=-0.1, high=0.1,
size=(input_shape, HL1_neurons))/np.sqrt(input_shape / 2.)
HL2_output_weights = np.random.uniform(low=-0.1, high=0.1, size=(HL1_neurons, output_neurons))/np.sqrt(HL1_neurons / 2.)
weights = np.array([input_HL1_weights, HL2_output_weights])
#b1 = np.zeros((1, H))
#b2 = np.zeros((1, H))
return weights
def drop_out(p,h1):
u1 = np.random.binomial(1, p, size=h1.shape)
h1 *= u1
return h1
final_weights = []
final_rewards = []
replications = 1
env = gym.make("Acrobot-v1")
env.seed(1)
for j in range(replications):
input_shape = 7
output_dim = 3
env1 = copy.deepcopy(env)
env2 = copy.deepcopy(env)
env3 = copy.deepcopy(env)
a = 1.0
c = 1.9
A = 50
N = 1000
alpha = 1
gamma = 1 / 6
seed = 5
discount_factor = 0.995
HL1_neurons = 20
weights = weight_initialization(input_shape, HL1_neurons, output_dim, "uniform")
#print("weights= ", weights)
rewards = []
rewards_plus = []
rewards_minus = []
mean_rewards = []
episode_id = 1
env3 = wrappers.Monitor(env3, './acrobot_video1',resume=True, video_callable=lambda episode_id: True,force=True)
for i in range(N):
ak = a / (i + 1+A) ** alpha
ck = c / (i + 1) ** gamma
delta2 = delta(weights)
weights_plus = perturb_weights(weights, delta2, ck)
weights_minus = perturb_weights(weights, delta2, -ck)
rewplus = train_network(weights_plus, env1, activation="tanh")
rewminus = train_network(weights_minus, env2, activation="tanh")
rewards1 = train_network(weights, env3, activation="tanh")
rewards.append(rewards1)
m = np.mean(rewards[:-10])
mean_rewards.append(m)
rewards_plus.append(rewplus)
rewards_minus.append(rewminus)
print('rep = ',j,'episode =' ,i, 'reward = ',rewards1)
diff = (rewplus - rewminus) * ak
weights = update_weights(weights, delta2, ck, diff)
final_rewards.append(rewards)
env3.close()
#for i in range(len(weights)):
# weights[i] = tau*weights_old[i] + (1-tau) * weights[i]
#weights_old = weights
#tau = 0.5
np.save('spsa_acrobot',final_rewards)
avg_reward = np.zeros(5000)
for i in range(5000):
sum = 0
for k in range(len(final_rewards)):
sum = sum + final_rewards[k][i]
avg_reward[i]=sum/len(final_rewards)
plt.plot(np.arange(N),rewards)
np.save('mr',mean_rewards)
np.save('r',rewards)
smoothed_rewards = [np.mean(avg_reward[max(0,i-50):i+1]) for i in range(len(avg_reward))]
smoothed_rewards1 = [np.mean(rewards[i-10:i+1]) for i in range(len(test_rewards))]
plt.figure(figsize=(12,8))
#plt.plot(smoothed_rewards1)
plt.plot(smoothed_rewards, 'b')
plt.title('SPSA based Policy Optimization')
plt.xlabel('Number of Episodes')
plt.ylabel('Smoothed Mean Rewards of last 10 episodes')
plt.show()