-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmax_flow.py
192 lines (144 loc) · 5.99 KB
/
max_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import math
from collections import deque
from graph import Graph, Edge
def dfs(graph: Graph, source: int, target: int) -> tuple[list[Edge], list[int]]:
parent = [None] * graph.number_of_nodes()
stack = deque([source])
visited = [False] * graph.number_of_nodes()
visited[source] = True
while stack:
u = stack.popleft()
for edge in graph.get_edges_by_node(u):
if not visited[edge.end] and edge.residual_capacity() > 0:
stack.appendleft(edge.end)
visited[edge.end] = True
parent[edge.end] = edge
if edge.end == target:
return parent, []
def bfs_capacity(graph: Graph, source: int, target: int, delta: int) -> tuple[list[Edge], list[int]]:
parent = [None] * graph.number_of_nodes()
level = [-1] * graph.number_of_nodes()
level[source] = 0
queue = deque([source])
visited = [False] * graph.number_of_nodes()
visited[source] = True
while queue:
u = queue.popleft()
for edge in graph.get_edges_by_node(u):
if not visited[edge.end] and edge.residual_capacity() >= delta:
queue.append(edge.end)
visited[edge.end] = True
parent[edge.end] = edge
level[edge.end] = level[u] + 1
if edge.end == target:
return parent, level
def bfs(graph: Graph, source: int, target: int) -> tuple[list[Edge], list[int]]:
return bfs_capacity(graph, source, target, 1)
def ford_fulkerson(graph: Graph, source: int, target: int, path_algo=dfs):
while result := path_algo(graph, source, target):
parent, *_ = result
path_flow = math.inf
tmp = target
path = deque()
while tmp != source:
path_flow = min(path_flow, parent[tmp].residual_capacity())
path.appendleft(parent[tmp])
tmp = parent[tmp].start
tmp = target
while tmp != source:
parent[tmp].adjust(path_flow)
tmp = parent[tmp].start
yield list(path)
def edmonds_karp(graph: Graph, source: int, target: int):
yield from ford_fulkerson(graph, source, target, bfs)
def capacity_scaling(graph: Graph, source: int, target: int):
max_capacity = max(e.capacity for e in graph.get_edges())
delta = 2 ** math.floor(math.log(max_capacity, 2))
while delta >= 1:
while result := bfs_capacity(graph, source, target, delta):
parent, *_ = result
path_flow = math.inf
tmp = target
path = deque()
while tmp != source:
path_flow = min(path_flow, parent[tmp].residual_capacity())
path.appendleft(parent[tmp])
tmp = parent[tmp].start
tmp = target
while tmp != source:
parent[tmp].adjust(path_flow)
tmp = parent[tmp].start
yield list(path)
delta /= 2
def dinic(graph: Graph, source: int, target: int):
def blocking_flow(u: int, flow: int, start: list[int], level: list[int], edges: list):
# dfs in acyclic layer graph
if u == target:
return flow
while start[u] < graph.get_degree(u):
edge = graph.get_edges_by_node(u)[start[u]] # edge.start == u
if level[edge.end] == level[edge.start] + 1 and edge.residual_capacity() > 0:
curr_flow = min(flow, edge.residual_capacity())
curr_flow = blocking_flow(edge.end, curr_flow, start, level, edges)
if curr_flow and curr_flow > 0:
edge.adjust(curr_flow)
edges.append(edge)
return curr_flow
start[u] += 1
while result := bfs(graph, source, target):
_, level = result
start = [0] * (graph.number_of_nodes() + 1)
edges = []
while _ := blocking_flow(source, math.inf, start, level, edges):
pass
yield edges, level
def goldberg_tarjan(graph: Graph, source: int, target: int):
excess = [0] * graph.number_of_nodes()
label = [0] * graph.number_of_nodes()
active = deque()
in_queue = [False] * graph.number_of_nodes()
def preflow():
edges = []
label[source] = graph.number_of_nodes()
for edge in graph.get_edges_by_node(source):
if not edge.reverse:
edge.flow = edge.capacity
excess[edge.end] += edge.flow
if edge.end != target:
active.append(edge.end)
in_queue[edge.end] = True
edges.append(edge)
return edges, excess, label, source
def push(node: int):
edges = []
for edge in graph.get_edges_by_node(node):
if edge.residual_capacity() == 0:
continue
if label[edge.start] == label[edge.end] + 1:
flow = min(edge.residual_capacity(), excess[node])
if flow > 0:
excess[edge.start] -= flow
excess[edge.end] += flow
edge.adjust(flow)
edges.append(edge)
if edge.end not in (source, target) and excess[edge.end] > 0 and not in_queue[edge.end]:
active.append(edge.end)
in_queue[edge.end] = True
return edges, excess, label, node
def relabel(node: int):
label[node] = 1 + min(label[edge.end]
for edge in graph.get_edges_by_node(node)
if edge.residual_capacity() > 0)
yield preflow()
while active:
u = active.popleft()
in_queue[u] = False
if any(label[edge.start] == label[edge.end] + 1 and
edge.residual_capacity() > 0
for edge in graph.get_edges_by_node(u)):
yield push(u)
else:
relabel(u)
if u not in (source, target) and excess[u] > 0:
active.append(u)
in_queue[u] = True