-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bev.py
executable file
·302 lines (232 loc) · 11.4 KB
/
train_bev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
@author: Ziyue Wang and Wen Li
@file: train_bev.py
@time: 2025/3/12 14:20
"""
import io
import time
import pstats
import cProfile
import torch.nn as nn
from hydra.utils import instantiate
from collections import OrderedDict
from omegaconf import OmegaConf, DictConfig
from pytorch3d.implicitron.tools import vis_utils
from accelerate import Accelerator, DistributedDataParallelKwargs
from utils.train_util import *
from datasets.composition_bev import MF_bev
from tqdm import tqdm
from tensorboardX import SummaryWriter
writer = SummaryWriter(log_dir='./runs/03_10')
def prefix_with_module(checkpoint):
prefixed_checkpoint = OrderedDict()
for key, value in checkpoint.items():
prefixed_key = "module." + key
prefixed_checkpoint[prefixed_key] = value
return prefixed_checkpoint
# Wrapper for cProfile.Profile for easily make optional, turn on/off and printing
class Profiler:
def __init__(self, active: bool):
self.c_profiler = cProfile.Profile()
self.active = active
def enable(self):
if self.active:
self.c_profiler.enable()
def disable(self):
if self.active:
self.c_profiler.disable()
def print(self):
if self.active:
s = io.StringIO()
sortby = pstats.SortKey.CUMULATIVE
ps = pstats.Stats(self.c_profiler, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())
def get_thread_count(var_name):
return os.environ.get(var_name)
def train_fn(cfg: DictConfig):
# NOTE carefully double check the instruction from huggingface!
OmegaConf.set_struct(cfg, False)
# Initialize the accelerator
accelerator = Accelerator(even_batches=False, device_placement=False)
accelerator.print("Model Config:")
accelerator.print(OmegaConf.to_yaml(cfg))
accelerator.print("Accelerator State:")
accelerator.print(accelerator.state)
torch.backends.cudnn.benchmark = cfg.train.cudnnbenchmark
set_seed_and_print(cfg.seed)
if accelerator.is_main_process:
viz = vis_utils.get_visdom_connection(
server="http://127.0.0.1",
port=int(os.environ.get("VISDOM_PORT", 8097)),
)
viz = vis_utils.get_visdom_connection(server="http://127.0.0.1",port=int(os.environ.get("VISDOM_PORT", 8097)))
accelerator.print(f"!!!!!!!!!!!!!!!!!!!!!!!!!! OMP_NUM_THREADS: {get_thread_count('OMP_NUM_THREADS')}")
accelerator.print(f"!!!!!!!!!!!!!!!!!!!!!!!!!! MKL_NUM_THREADS: {get_thread_count('MKL_NUM_THREADS')}")
accelerator.print(f"!!!!!!!!!!!!!!!!!!!!!!!!!! SLURM_CPU_BIND: {get_thread_count('SLURM_CPU_BIND')}")
accelerator.print(
f"!!!!!!!!!!!!!!!!!!!!!!!!!! SLURM_JOB_CPUS_PER_NODE: {get_thread_count('SLURM_JOB_CPUS_PER_NODE')}")
train_dataset = MF_bev(cfg.train.dataset, cfg, split='train')
eval_dataset = MF_bev(cfg.train.dataset, cfg, split='eval')
if cfg.train.num_workers > 0:
persistent_workers = cfg.train.persistent_workers
else:
persistent_workers = False
dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
pin_memory=cfg.train.pin_memory,
shuffle=True, drop_last=True,
persistent_workers=persistent_workers
) # collate_fn
eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers, pin_memory=cfg.train.pin_memory,
shuffle=False, persistent_workers=persistent_workers) # collate_fn
accelerator.print("length of train dataloader is: ", len(dataloader))
accelerator.print("length of eval dataloader is: ", len(eval_dataloader))
# Instantiate the model
model = instantiate(cfg.MODEL, _recursive_=False)
model = model.to(accelerator.device)
criterion = nn.BCEWithLogitsLoss()
# Define the numer of epoch
num_epochs = cfg.train.epochs
# log
if os.path.exists(cfg.exp_dir) == 0:
os.mkdir(cfg.exp_dir)
# Define the optimizer
if cfg.train.warmup_sche:
optimizer = torch.optim.AdamW(params=model.parameters(), lr=cfg.train.lr)
lr_scheduler = WarmupCosineLR(optimizer=optimizer, lr=cfg.train.lr,
warmup_steps=cfg.train.restart_num * len(dataloader), momentum=0.9,
max_steps=len(dataloader) * (cfg.train.epochs - cfg.train.restart_num))
else:
optimizer = torch.optim.AdamW(params=model.parameters(), lr=cfg.train.lr, weight_decay=cfg.train.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=80, gamma=0.5)
model, dataloader, optimizer, lr_scheduler = accelerator.prepare(model, dataloader, optimizer, lr_scheduler)
accelerator.print(f"xxxxxxxxxxxxxxxxxx dataloader has {dataloader.num_workers} num_workers")
start_epoch = 0
to_plot = ("loss", "lr", "diffloss", "error_t", "error_q")
stats = VizStats(to_plot)
for epoch in range(start_epoch, num_epochs):
stats.new_epoch()
set_seed_and_print(cfg.seed + epoch)
# Evaluation
if (epoch != 0) and (epoch % cfg.train.eval_interval == 0):
# if (epoch % cfg.train.eval_interval == 0):
accelerator.print(f"----------Start to eval at epoch {epoch}----------")
_train_or_eval_fn(model, criterion, eval_dataloader, cfg, optimizer, stats, accelerator, lr_scheduler, epoch, training=False)
accelerator.print(f"----------Finish the eval at epoch {epoch}----------")
else:
accelerator.print(f"----------Skip the eval at epoch {epoch}----------")
# Training
accelerator.print(f"----------Start to train at epoch {epoch}----------")
_train_or_eval_fn(model, criterion, dataloader, cfg, optimizer, stats, accelerator, lr_scheduler, epoch, training=True)
accelerator.print(f"----------Finish the train at epoch {epoch}----------")
if accelerator.is_main_process:
for g in optimizer.param_groups:
lr = g['lr']
break
accelerator.print(f"----------LR is {lr}----------")
accelerator.print(f"----------Saving stats to {cfg.exp_name}----------")
stats.update({"lr": lr}, stat_set="train")
stats.plot_stats(viz=viz, visdom_env=cfg.exp_name)
accelerator.print(f"----------Done----------")
if epoch >= 40:
accelerator.wait_for_everyone()
ckpt_path = os.path.join(cfg.exp_dir, f"ckpt_{epoch:06}.pth")
accelerator.print(f"----------Saving the ckpt at epoch {epoch} to {ckpt_path}----------")
unwrapped_model = accelerator.unwrap_model(model)
if epoch % 5 == 0:
accelerator.save(unwrapped_model.state_dict(), ckpt_path)
if accelerator.is_main_process:
stats.save(cfg.exp_dir + "stats")
return True
def _train_or_eval_fn(model, criterion, dataloader, cfg, optimizer, stats, accelerator, lr_scheduler, epoch, training=True):
if training:
model.train()
else:
model.eval()
# print(f"Start the loop for process {accelerator.process_index}")
time_start = time.time()
max_it = len(dataloader)
pose_stats = os.path.join(cfg.train.dataroot, cfg.train.dataset, cfg.train.dataset + '_pose_stats.txt')
pose_m, pose_s = np.loadtxt(pose_stats)
pose_s = torch.from_numpy(pose_s).to(accelerator.device)
pose_m = torch.from_numpy(pose_m).to(accelerator.device)
tqdm_loader = tqdm(dataloader, total=len(dataloader))
for step, batch in enumerate(tqdm_loader):
images = batch["image"].to(accelerator.device) # [B, N, 3, 251, 251]
batch_size, frame_size = images.size(0), images.size(1)
poses = batch["pose"].to(accelerator.device) # [B, N, 3]
H, W = images.size(-2), images.size(-1)
if training:
predictions = model(images, poses, training=True)
predictions["diffloss"] = predictions["diffloss"]
loss = predictions["diffloss"]
writer.add_scalar('train/diffloss', loss.item(), step + epoch * max_it)
else:
with torch.no_grad():
predictions = model(images, training=False)
# calculate metric
frame_num = frame_size * batch_size
pred_poses = predictions['pred_pose'].reshape(frame_num, 3) # [B*N, 3]
gt_poses = poses.reshape(frame_num, 3) # [B*N, 3]
iou = 0.
for i in range(frame_num):
if i == 0:
error_t = t_error(pred_poses[i, :2], gt_poses[i, :2], pose_s[:2], pose_m[:2])
error_q = q_error(pred_poses[i, 2], gt_poses[i, 2])
else:
error_t += (t_error(pred_poses[i, :2], gt_poses[i, :2], pose_s[:2], pose_m[:2]))
error_q += (q_error(pred_poses[i, 2], gt_poses[i, 2]))
predictions['error_t'] = error_t / frame_num
predictions['error_q'] = error_q / frame_num
if training:
writer.add_scalar('train/error_t', predictions['error_t'].item(), step + epoch * max_it)
writer.add_scalar('train/error_q', predictions['error_q'].item(), step + epoch * max_it)
if training:
stats.update(predictions, time_start=time_start, stat_set="train")
if step % cfg.train.print_interval == 0:
accelerator.print(stats.print(stat_set="train", max_it=max_it))
else:
stats.update(predictions, time_start=time_start, stat_set="eval")
if step % cfg.train.print_interval == 0:
accelerator.print(stats.print(stat_set="eval", max_it=max_it))
if training:
optimizer.zero_grad()
accelerator.backward(loss)
if cfg.train.clip_grad > 0 and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), cfg.train.clip_grad)
optimizer.step()
lr_scheduler.step()
return True
def t_error(pred_poses, gt_poses, pose_s, pose_mean):
with torch.no_grad():
error_t = val_translation(pred_poses, gt_poses, pose_s, pose_mean)
return error_t
def q_error(pred_poses, gt_poses):
with torch.no_grad():
p = r_to_d(pred_poses)
q = r_to_d(gt_poses)
error_q = abs(p - q)
return error_q
def r_to_d(r):
d = r * 180 / np.pi
return d
def val_translation(pred_p, gt_p, pose_s, pose_mean):
"""
test model, compute error (numpy)
input:
pred_p: [3,]
gt_p: [3,]
returns:
translation error (m):
"""
pred_p = (pred_p * pose_s) + pose_mean
gt_p = (gt_p * pose_s) + pose_mean
error = torch.linalg.norm(gt_p - pred_p)
return error
if __name__ == '__main__':
# oxford_bev.yaml / nclt_bev.yaml
conf = OmegaConf.load('cfgs/oxford_bev.yaml')
# conf = OmegaConf.load('cfgs/nclt_bev.yaml')
train_fn(conf)