-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_dec.py
352 lines (296 loc) · 14.8 KB
/
keras_dec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
'''
Keras implementation of deep embedder to improve clustering, inspired by:
"Unsupervised Deep Embedding for Clustering Analysis" (Xie et al, ICML 2016)
Definition can accept somewhat custom neural networks. Defaults are from paper.
'''
import sys
import numpy as np
import keras.backend as K
from keras.initializers import RandomNormal
from keras.engine.topology import Layer, InputSpec
from keras.models import Model, Sequential
from keras.layers import Dense, Dropout, Input
from keras.optimizers import SGD
from sklearn.preprocessing import normalize
from keras.callbacks import LearningRateScheduler
from sklearn.utils.linear_assignment_ import linear_assignment
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
if (sys.version[0] == 2):
import cPickle as pickle
else:
import pickle
import numpy as np
class ClusteringLayer(Layer):
'''
Clustering layer which converts latent space Z of input layer
into a probability vector for each cluster defined by its centre in
Z-space. Use Kullback-Leibler divergence as loss, with a probability
target distribution.
# Arguments
output_dim: int > 0. Should be same as number of clusters.
input_dim: dimensionality of the input (integer).
This argument (or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
weights: list of Numpy arrays to set as initial weights.
The list should have 2 elements, of shape `(input_dim, output_dim)`
and (output_dim,) for weights and biases respectively.
alpha: parameter in Student's t-distribution. Default is 1.0.
# Input shape
2D tensor with shape: `(nb_samples, input_dim)`.
# Output shape
2D tensor with shape: `(nb_samples, output_dim)`.
'''
def __init__(self, output_dim, input_dim=None, weights=None, alpha=1.0, **kwargs):
self.output_dim = output_dim
self.input_dim = input_dim
self.alpha = alpha
# kmeans cluster centre locations
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(ClusteringLayer, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = [InputSpec(dtype=K.floatx(),
shape=(None, input_dim))]
self.W = K.variable(self.initial_weights)
self.trainable_weights = [self.W]
def call(self, x, mask=None):
q = 1.0/(1.0 + K.sqrt(K.sum(K.square(K.expand_dims(x, 1) - self.W), axis=2))**2 /self.alpha)
q = q**((self.alpha+1.0)/2.0)
q = K.transpose(K.transpose(q))
# /K.sum(q, axis=1)
return q
def get_output_shape_for(self, input_shape):
assert input_shape and len(input_shape) == 2
return (input_shape[0], self.output_dim)
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
return (input_shape[0], self.output_dim)
def get_config(self):
config = {'output_dim': self.output_dim,
'input_dim': self.input_dim}
base_config = super(ClusteringLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class DeepEmbeddingClustering(object):
def __init__(self,
n_clusters,
input_dim,
encoded=None,
decoded=None,
alpha=1.0,
pretrained_weights=None,
cluster_centres=None,
batch_size=256,
**kwargs):
super(DeepEmbeddingClustering, self).__init__()
self.n_clusters = n_clusters
self.input_dim = input_dim
self.encoded = encoded
self.decoded = decoded
self.alpha = alpha
self.pretrained_weights = pretrained_weights
self.cluster_centres = cluster_centres
self.batch_size = batch_size
self.learning_rate = 0.1
self.iters_lr_update = 20000
self.lr_change_rate = 0.1
# greedy layer-wise training before end-to-end training:
self.encoders_dims = [self.input_dim, 500, 500, 2000, 10]
self.input_layer = Input(shape=(self.input_dim,), name='input')
dropout_fraction = 0.2
init_stddev = 0.01
self.layer_wise_autoencoders = []
self.encoders = []
self.decoders = []
for i in range(1, len(self.encoders_dims)):
encoder_activation = 'linear' if i == (len(self.encoders_dims) - 1) else 'relu'
encoder = Dense(self.encoders_dims[i], activation=encoder_activation,
input_shape=(self.encoders_dims[i-1],),
kernel_initializer=RandomNormal(mean=0.0, stddev=init_stddev, seed=None),
bias_initializer='zeros', name='encoder_dense_%d'%i)
self.encoders.append(encoder)
decoder_index = len(self.encoders_dims) - i
decoder_activation = 'linear' if i == 1 else 'relu'
decoder = Dense(self.encoders_dims[i-1], activation=decoder_activation,
kernel_initializer=RandomNormal(mean=0.0, stddev=init_stddev, seed=None),
bias_initializer='zeros',
name='decoder_dense_%d'%decoder_index)
self.decoders.append(decoder)
autoencoder = Sequential([
Dropout(dropout_fraction, input_shape=(self.encoders_dims[i-1],),
name='encoder_dropout_%d'%i),
encoder,
Dropout(dropout_fraction, name='decoder_dropout_%d'%decoder_index),
decoder
])
autoencoder.compile(loss='mse', optimizer=SGD(lr=self.learning_rate, decay=0, momentum=0.9))
self.layer_wise_autoencoders.append(autoencoder)
# build the end-to-end autoencoder for finetuning
# Note that at this point dropout is discarded
self.encoder = Sequential(self.encoders)
self.encoder.compile(loss='mse', optimizer=SGD(lr=self.learning_rate, decay=0, momentum=0.9))
self.decoders.reverse()
self.autoencoder = Sequential(self.encoders + self.decoders)
self.autoencoder.compile(loss='mse', optimizer=SGD(lr=self.learning_rate, decay=0, momentum=0.9))
if cluster_centres is not None:
assert cluster_centres.shape[0] == self.n_clusters
assert cluster_centres.shape[1] == self.encoder.layers[-1].output_dim
if self.pretrained_weights is not None:
self.autoencoder.load_weights(self.pretrained_weights)
def p_mat(self, q):
weight = q**2 / q.sum(0)
return (weight.T / weight.sum(1)).T
def initialize(self, X, save_autoencoder=False, layerwise_pretrain_iters=50000, finetune_iters=100000):
if self.pretrained_weights is None:
iters_per_epoch = int(len(X) / self.batch_size)
layerwise_epochs = max(int(layerwise_pretrain_iters / iters_per_epoch), 1)
finetune_epochs = max(int(finetune_iters / iters_per_epoch), 1)
print('layerwise pretrain')
current_input = X
lr_epoch_update = max(1, self.iters_lr_update / float(iters_per_epoch))
def step_decay(epoch):
initial_rate = self.learning_rate
factor = int(epoch / lr_epoch_update)
lr = initial_rate / (10 ** factor)
return lr
lr_schedule = LearningRateScheduler(step_decay)
for i, autoencoder in enumerate(self.layer_wise_autoencoders):
if i > 0:
weights = self.encoders[i-1].get_weights()
dense_layer = Dense(self.encoders_dims[i], input_shape=(current_input.shape[1],),
activation='relu', weights=weights,
name='encoder_dense_copy_%d'%i)
encoder_model = Sequential([dense_layer])
encoder_model.compile(loss='mse', optimizer=SGD(lr=self.learning_rate, decay=0, momentum=0.9))
current_input = encoder_model.predict(current_input)
autoencoder.fit(current_input, current_input,
batch_size=self.batch_size, epochs=layerwise_epochs, callbacks=[lr_schedule])
self.autoencoder.layers[i].set_weights(autoencoder.layers[1].get_weights())
self.autoencoder.layers[len(self.autoencoder.layers) - i - 1].set_weights(autoencoder.layers[-1].get_weights())
print('Finetuning autoencoder')
#update encoder and decoder weights:
self.autoencoder.fit(X, X, batch_size=self.batch_size, epochs=finetune_epochs, callbacks=[lr_schedule])
if save_autoencoder:
self.autoencoder.save_weights('autoencoder.h5')
else:
print('Loading pretrained weights for autoencoder.')
self.autoencoder.load_weights(self.pretrained_weights)
# update encoder, decoder
# TODO: is this needed? Might be redundant...
for i in range(len(self.encoder.layers)):
self.encoder.layers[i].set_weights(self.autoencoder.layers[i].get_weights())
# initialize cluster centres using k-means
print('Initializing cluster centres with k-means.')
if self.cluster_centres is None:
kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
self.y_pred = kmeans.fit_predict(self.encoder.predict(X))
self.cluster_centres = kmeans.cluster_centers_
# prepare DEC model
#self.DEC = Model(inputs=self.input_layer,
# outputs=ClusteringLayer(self.n_clusters,
# weights=self.cluster_centres,
# name='clustering')(self.encoder))
self.DEC = Sequential([self.encoder,
ClusteringLayer(self.n_clusters,
weights=self.cluster_centres,
name='clustering')])
self.DEC.compile(loss='kullback_leibler_divergence', optimizer='adadelta')
return
def cluster_acc(self, y_true, y_pred):
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max())+1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind])*1.0/y_pred.size, w
def cluster(self, X, y=None,
tol=0.01, update_interval=None,
iter_max=1e6,
save_interval=None,
cutoff=0.5,
**kwargs):
if update_interval is None:
# 1 epochs
update_interval = X.shape[0]/self.batch_size
print('Update interval', update_interval)
if save_interval is None:
# 50 epochs
save_interval = X.shape[0]/self.batch_size*50
print('Save interval', save_interval)
assert save_interval >= update_interval
train = True
iteration, index = 0, 0
self.accuracy = []
while train:
sys.stdout.write('\r')
# cutoff iteration
if iter_max >= 1 and iter_max < iteration:
print('Reached maximum iteration limit. Stopping training.')
#return self.y_pred
return self.q
# update (or initialize) probability distributions and propagate weight changes
# from DEC model to encoder.
if iter_max == 0 or iteration % update_interval == 0:
self.q = self.DEC.predict(X, verbose=0)
#print(self.q)
#print("Max prob: " + str(np.amax(self.q)))
#print("Min prob: " + str(np.amin(self.q)))
self.p = self.p_mat(self.q)
#if (self.n_clusters > 1):
y_pred = self.q.argmax(1)
#else:
# y_pred = np.asarray([1 if x[0] >= cutoff else 0 for x in self.q])
#print("PROBS")
#print(self.q)
#print("PREDS")
#print(y_pred)
delta_label = ((y_pred != self.y_pred).sum().astype(np.float32) / y_pred.shape[0])
if y is not None:
acc = self.cluster_acc(y, y_pred)[0]
self.accuracy.append(acc)
print('Iteration '+str(iteration)+', Accuracy '+str(np.round(acc, 5)))
print(str(np.round(delta_label*100, 5))+'% change in label assignment')
if delta_label < tol and iteration >= 1 or iter_max == 0 :
print('Reached tolerance threshold or iter_max == 0. Stopping training.')
train = False
self.y_pred = y_pred
#return self.y_pred
return (self.q, self.y_pred)
pass
else:
self.y_pred = y_pred
for i in range(len(self.encoder.layers)):
self.encoder.layers[i].set_weights(self.DEC.layers[0].layers[i].get_weights())
self.cluster_centres = self.DEC.layers[-1].get_weights()[0]
# train on batch
if train:
sys.stdout.write('Iteration %d, ' % iteration)
if (index+1)*self.batch_size > X.shape[0]:
loss = self.DEC.train_on_batch(X[index*self.batch_size::], self.p[index*self.batch_size::])
index = 0
sys.stdout.write('Loss %f' % loss)
else:
loss = self.DEC.train_on_batch(X[index*self.batch_size:(index+1) * self.batch_size],
self.p[index*self.batch_size:(index+1) * self.batch_size])
sys.stdout.write('Loss %f' % loss)
index += 1
# save intermediate
if iteration % save_interval == 0 or not train:
z = self.encoder.predict(X)
pca = PCA(n_components=2).fit(z)
z_2d = pca.transform(z)
clust_2d = pca.transform(self.cluster_centres)
# save states for visualization
pickle.dump({'z_2d': z_2d, 'clust_2d': clust_2d, 'q': self.q, 'p': self.p},
open('c'+str(iteration)+'.pkl', 'wb'))
# save DEC model checkpoints
self.DEC.save('DEC_model_'+str(iteration)+'.h5')
iteration += 1
sys.stdout.flush()
#return self.y_pred
return self.q