Skip to content

Commit 8063ecb

Browse files
Merge pull request #1657 from as-suvorov/asuvorov/pot-removal
Remove 111-yolov5-quantization-migration notebook
2 parents 4ed7fb1 + 87f4b54 commit 8063ecb

8 files changed

+0
-1542
lines changed

.ci/ignore_treon_docker.txt

-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
107-speech-recognition-quantization
22
108-gpu-device
3-
111-yolov5-quantization-migration
43
117-model-server
54
122-quantizing-model-with-accuracy-control
65
204-segmenter-semantic-segmentation

.ci/ignore_treon_linux.txt

-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
107-speech-recognition-quantization
22
108-gpu-device
3-
111-yolov5-quantization-migration
43
112-pytorch-post-training-quantization-nncf
54
117-model-server
65
122-quantizing-model-with-accuracy-control

.ci/ignore_treon_mac.txt

-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
107-speech-recognition-quantization
22
108-gpu-device
3-
111-yolov5-quantization-migration
43
117-model-server
54
122-quantizing-model-with-accuracy-control
65
204-segmenter-semantic-segmentation

.ci/ignore_treon_win.txt

-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
107-speech-recognition-quantization
22
108-gpu-device
3-
111-yolov5-quantization-migration
43
117-model-server
54
122-quantizing-model-with-accuracy-control
65
204-segmenter-semantic-segmentation

README.md

-1
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,6 @@ Tutorials that explain how to optimize and quantize models with OpenVINO tools.
127127
| [108-gpu-device](notebooks/108-gpu-device/) | Working with GPUs in OpenVINO™ |
128128
| [109-performance-tricks](notebooks/109-performance-tricks/)| Performance tricks in OpenVINO™ |
129129
| [110-ct-segmentation-quantize](notebooks/110-ct-segmentation-quantize/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F110-ct-segmentation-quantize%2F110-ct-scan-live-inference.ipynb) | Quantize a kidney segmentation model and show live inference |
130-
| [111-yolov5-quantization-migration](notebooks/111-yolov5-quantization-migration)<br>[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/main/notebooks/111-yolov5-quantization-migration/111-yolov5-quantization-migration.ipynb) | Migrate YOLOv5 POT API based quantization pipeline on Neural Network Compression Framework (NNCF) | <img src = "https://user-images.githubusercontent.com/44352144/177097174-cfe78939-e946-445e-9fce-d8897417ef8e.png" width=225> |
131130
| [112-pytorch-post-training-quantization-nncf](notebooks/112-pytorch-post-training-quantization-nncf/) | Use Neural Network Compression Framework (NNCF) to quantize PyTorch model in post-training mode (without model fine-tuning) |
132131
| [113-image-classification-quantization](notebooks/113-image-classification-quantization/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?labpath=notebooks%2F113-image-classification-quantization%2F113-image-classification-quantization.ipynb)<br>[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/main/notebooks/113-image-classification-quantization/113-image-classification-quantization.ipynb) | Quantize Image Classification model |
133132
| [115-async-api](notebooks/115-async-api/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?labpath=notebooks%2F115-async-api%2F115-async-api.ipynb)<br>[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/main/notebooks/115-async-api/115-async-api.ipynb) | Use Asynchronous Execution to Improve Data Pipelining | |

README_cn.md

-1
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,6 @@ Jupyter notebooks 分为四个大类,选择一个跟你需求相关的开始
111111
| [108-gpu-device](notebooks/108-gpu-device/) | 在GPU上使用OpenVINO™ |
112112
| [109-performance-tricks](notebooks/109-performance-tricks/)| OpenVINO™ 的优化技巧 |
113113
| [110-ct-segmentation-quantize](notebooks/110-ct-segmentation-quantize/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F110-ct-segmentation-quantize%2F110-ct-scan-live-inference.ipynb) | 量化肾脏分割模型并展示实时推理 |
114-
| [111-yolov5-quantization-migration](notebooks/111-yolov5-quantization-migration)<br>[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/main/notebooks/111-yolov5-quantization-migration/111-yolov5-quantization-migration.ipynb) | 在神经网络压缩框架(NNCF)上迁移基于YOLOv5 POT API的量化管道 | <img src = "https://user-images.githubusercontent.com/44352144/177097174-cfe78939-e946-445e-9fce-d8897417ef8e.png" width=225> |
115114
| [112-pytorch-post-training-quantization-nncf](notebooks/112-pytorch-post-training-quantization-nncf/) | 利用神经网络压缩框架(NNCF)在后训练模式下来量化PyTorch模型(无需模型微调) |
116115
| [113-image-classification-quantization](notebooks/113-image-classification-quantization/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?labpath=notebooks%2F113-image-classification-quantization%2F113-image-classification-quantization.ipynb) | 量化mobilenet图片分类模型 |
117116
| [115-async-api](notebooks/115-async-api/)<br>[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?labpath=notebooks%2F115-async-api%2F115-async-api.ipynb)<br>[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/main/notebooks/115-async-api/115-async-api.ipynb) | 使用异步执行改进数据流水线 | |

0 commit comments

Comments
 (0)