-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathml_model.py
41 lines (29 loc) · 1.1 KB
/
ml_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from text_processing import getTrainData, getTestData, prepare_embedding
from constant import *
from util import scoreSelf, formResult, loadTestEntities, scorerEval
def svm(train_data, test_data, label):
# clf = SVC()
clf = LogisticRegression()
clf.fit(train_data, label)
# predict
predict = []
for test in test_data:
test = np.reshape(test, (1, embedding_dim))
predict.append(clf.predict(test))
return predict
def lightGBM(train_data, test_data, label):
pass
if __name__ == "__main__":
embedding_dict = prepare_embedding()
train_data, label = getTrainData(embedding_dict)
test_data = getTestData(embedding_dict)
predict = svm(train_data, test_data, label)
print(predict[:10])
scoreSelf(predict)
test_entity = loadTestEntities('%skeys.test.1.1.txt' % test_data_path)
formResult(test_entity, label, filename='svm.txt')
print(scorerEval('%ssvm.txt' % prediction_path,
'%skeys.test.1.1.txt' % test_data_path))