-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_dynamics.py
239 lines (184 loc) · 8.21 KB
/
model_dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import torch
import wandb
import warnings
import numpy as np
import pandas as pd
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from vae_arguments import get_args
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer, seed_everything
warnings.filterwarnings("ignore")
class CraneDataset(Dataset):
def __init__(self, X: np.ndarray, Y_recon: np.ndarray):
self.X = X
self.Y_recon = Y_recon
def __len__(self):
return len(self.X)
def __getitem__(self, index):
return self.X[index], self.Y_recon[index]
class CraneDatasetModule():
def __init__(self, seq_len, batch_size, num_workers=2):
self.seq_len = seq_len
self.batch_size = batch_size
self.num_workers = num_workers
self.X_train, self.Y_train_recon = self.get_data('train_df.csv')
self.X_val, self.Y_val_recon = self.get_data('val_df.csv')
self.X_test, self.Y_test_recon = self.get_data('test_df.csv')
def get_data(self, file_type):
train_feats = ['Engine Average Power', 'Engine Torque Average', 'Fuel Consumption Rate Average']
train_data_path = os.path.join("datasets",file_type)
full_data_path = os.path.join("datasets", "features_to_train.csv")
fd = pd.read_csv(full_data_path)
df = pd.read_csv(train_data_path)
df.loc[:,train_feats] = (df.loc[:,train_feats] - fd.loc[:,train_feats].min())/(
fd.loc[:,train_feats].max() - fd.loc[:,train_feats].min())
input = []
pred = []
for sess in df['Session id'].unique():
sess_feat = df.loc[df["Session id"]==sess,:]
for i in range(0,len(sess_feat)-self.seq_len):
input.append(list(sess_feat.iloc[i:i+self.seq_len,:][train_feats].values))
pred.append(list(sess_feat.iloc[i:i+self.seq_len,:][train_feats].values))
return torch.tensor(input).float(), torch.tensor(pred).float()
def train_dataloader(self):
train_dataset = CraneDataset(self.X_train, self.Y_train_recon)
train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, drop_last=True)
return train_loader
def val_dataloader(self):
val_dataset = CraneDataset(self.X_val, self.Y_val_recon)
val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, drop_last=True)
return val_loader
def test_dataloader(self):
test_dataset = CraneDataset(self.X_test, self.Y_test_recon)
test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=True)
return test_loader
class Encoder(nn.Module):
def __init__(self, n_features, latent_spc, fc_dim):
super(Encoder, self).__init__()
self.n_features = n_features
self.latent_spc = latent_spc
self.fc_dim = fc_dim
self.lstm = nn.LSTM(input_size=self.n_features,
hidden_size=self.n_features,
batch_first=True,
dropout=0.3)
self.elu = nn.ELU()
self.fc = nn.Linear(self.n_features, self.fc_dim)
self.fc1 = nn.Linear(self.fc_dim, self.fc_dim)
self.ls1 = nn.Linear(self.fc_dim, self.latent_spc)
self.ls2 = nn.Linear(self.fc_dim, self.latent_spc)
self.final = nn.Linear(self.latent_spc, self.n_features)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
def forward(self, x):
_, (h_out, _) = self.lstm(x)
out = self.elu(self.fc(h_out))
out = self.elu(self.fc1(out))
mu, logvar = self.ls1(out), self.ls2(out)
z_latent = self.reparameterize(mu, logvar)
return z_latent, mu, logvar
class Decoder(nn.Module):
def __init__(self, n_features, fc_dim):
super(Decoder, self).__init__()
self.n_features = n_features
self.fc_dim = fc_dim
self.lstm = nn.LSTM(input_size=self.n_features,
hidden_size=self.n_features,
batch_first=True,
dropout=0.3)
def forward(self, inp, hidden):
out, hidden = self.lstm(inp, hidden)
return out, hidden
class DynamicsPredictor(pl.LightningModule):
def __init__(self, n_features, fc_dim, seq_len, batch_size, latent_spc, learning_rate, epochs, beta):
super(DynamicsPredictor,self).__init__()
self.n_features = n_features
self.fc_dim = fc_dim
self.seq_len = seq_len
self.batch_size = batch_size
self.learning_rate = learning_rate
self.latent_spc = latent_spc
self.max_epochs = epochs
self.beta = beta
self.initial = nn.Linear(self.latent_spc,self.n_features)
self.encoder = Encoder(n_features, latent_spc, fc_dim)
self.decoder = Decoder(n_features, fc_dim)
self.save_hyperparameters()
def forward(self, x, y_decod, is_train):
x, mu, logvar = self.encoder(x)
x = self.initial(x)
hidden = (x, x)
output = []
if is_train:
out, _ = self.decoder(y_decod, hidden)
output = out
else:
batch_size = y_decod.size()[0]
out = y_decod[:,0,:].unsqueeze(1)
for _ in range(self.seq_len):
out, hidden = self.decoder(out, hidden)
output.append(out)
output = torch.stack(output, dim=0)
output = torch.reshape(output, (batch_size, self.seq_len, self.n_features))
return output, mu, logvar
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.learning_rate)
def final_process(self, batch, p_type, is_train):
x, y_decod = batch
y_hat, mu, logvar = self(x, y_decod, is_train)
rloss = F.mse_loss(y_hat, y_decod)
kld = -0.5 * torch.sum(1 + logvar -mu.pow(2) - logvar.exp())
loss = rloss + kld * self.beta
self.log(f'{p_type}/recon_loss', rloss, on_epoch=True)
self.log(f'{p_type}/kld', kld, on_epoch=True)
self.log(f'{p_type}/total_loss', loss, on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
loss = self.final_process(batch, 'train', is_train=True)
return loss
def validation_step(self, batch, batch_idx):
loss = self.final_process(batch, 'val', is_train=False)
return loss
def test_step(self, batch, batch_idx):
loss = self.final_process(batch, 'test', is_train=False)
return loss
if __name__ == "__main__":
args = get_args()
dm = CraneDatasetModule(
seq_len = args.seq_len_dynamics,
batch_size = args.batch_size_dynamics
)
model_path = os.path.join('save_model',f"lstm_vae_dynamic.pth")
wandb.init(name = f"32seq_lstm_vae_Recon_w_class")
train_loader = dm.train_dataloader()
val_loader = dm.val_dataloader()
test_loader = dm.test_dataloader()
seed_everything(1)
model = DynamicsPredictor(
n_features = args.n_features_dynamics,
fc_dim = args.fc_dim_dynamics,
seq_len = args.seq_len_dynamics,
batch_size = args.batch_size_dynamics,
latent_spc = args.latent_spc_dynamics,
learning_rate = args.learning_rate,
epochs = args.max_epochs,
beta = args.beta
)
wandb_logger = WandbLogger(project="lit-wandb")
trainer = Trainer(max_epochs=args.max_epochs,
gpus = 1,
logger=wandb_logger,
log_every_n_steps=500,
)
wandb_logger.watch(model, log="all")
trainer.fit(model, train_loader, val_loader)
trainer.test(model, dataloaders=test_loader)
torch.save(model.state_dict(), model_path)
print("Saved")
wandb.finish()