forked from xxyzz/WordDumb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_job.py
144 lines (122 loc) · 5.33 KB
/
parse_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
import json
import re
from calibre.ebooks.mobi.reader.mobi6 import MobiReader
from calibre.ebooks.mobi.reader.mobi8 import Mobi8Reader
from calibre_plugins.worddumb.config import prefs
from calibre_plugins.worddumb.database import (create_lang_layer,
create_x_ray_db, insert_lemma,
save_db)
from calibre_plugins.worddumb.metadata import get_asin_etc
from calibre_plugins.worddumb.unzip import install_libs, load_json_or_pickle
from calibre_plugins.worddumb.x_ray import X_Ray
def do_job(data, create_ww=True, create_x=True,
abort=None, log=None, notifications=None):
(book_id, book_fmt, book_path, mi, lang) = data
is_kfx = book_fmt == 'KFX'
asin, acr, revision, update_asin, yj_book, codec = get_asin_etc(
book_path, is_kfx, mi)
model = lang['spacy'] + prefs['model_size']
install_libs(model, create_ww, create_x, notifications)
if create_ww:
ll_conn, ll_path = create_lang_layer(asin, book_path, acr, revision)
if ll_conn is None:
create_ww = False
else:
kw_processor = load_json_or_pickle('lemmas_dump', False)
if create_x:
x_ray_conn, x_ray_path = create_x_ray_db(asin, book_path, lang['wiki'])
if x_ray_conn is None:
create_x = False
if notifications:
notifications.put((0, 'Creating files'))
if create_x:
import spacy
nlp = spacy.load(model, exclude=[
'tok2vec', 'morphologizer', 'tagger',
'parser', 'attribute_ruler', 'lemmatizer'])
nlp.enable_pipe("senter")
x_ray = X_Ray(x_ray_conn, lang['wiki'], book_path, is_kfx, codec)
for doc, start in nlp.pipe(
parse_book(book_path, yj_book, codec), as_tuples=True):
find_named_entity(start, x_ray, doc, is_kfx, codec)
if create_ww:
find_lemma(
start, doc.text, kw_processor, ll_conn, is_kfx, codec)
x_ray.finish(x_ray_path)
elif create_ww:
for text, start in parse_book(book_path, yj_book, codec):
find_lemma(start, text, kw_processor, ll_conn, is_kfx, codec)
if create_ww:
save_db(ll_conn, ll_path)
return book_id, asin, book_path, mi, update_asin
def parse_book(book_path, yj_book, codec):
if yj_book:
for entry in json.loads(yj_book.convert_to_json_content())['data']:
yield (entry['content'], entry['position'])
else:
# match text between HTML tags
for match_text in re.finditer(b'>[^<>]+<', parse_mobi(book_path)):
yield (match_text.group(0)[1:-1].decode(codec),
match_text.start() + 1)
def parse_mobi(book_path):
# use code from calibre.ebooks.mobi.reader.mobi8:Mobi8Reader.__call__
# and calibre.ebook.conversion.plugins.mobi_input:MOBIInput.convert
# https://github.com/kevinhendricks/KindleUnpack/blob/master/lib/mobi_k8proc.py#L216
with open(book_path, 'rb') as f:
mr = MobiReader(f)
if mr.kf8_type == 'joint':
raise Exception('JointMOBI')
mr.check_for_drm()
mr.extract_text()
html = mr.mobi_html
if mr.kf8_type == 'standalone':
m8r = Mobi8Reader(mr, mr.log)
m8r.kf8_sections = mr.sections
m8r.read_indices()
m8r.build_parts()
html = b''.join(m8r.parts)
return html
def find_lemma(start, text, kw_processor, ll_conn, is_kfx, codec):
for data, token_start, token_end in kw_processor.extract_keywords(
text, span_info=True):
end = None
lemma = text[token_start:token_end]
if is_kfx:
index = start + token_start
else:
index = start + len(text[:token_start].encode(codec))
if ' ' in lemma:
end = index + len(lemma) if is_kfx else index + len(
lemma.encode(codec))
insert_lemma(ll_conn, (index, end) + tuple(data))
# https://github.com/explosion/spaCy/blob/master/spacy/glossary.py#L318
NER_LABELS = {
'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'NORP', 'ORG',
'PERSON', 'PRODUCT', 'WORK_OF_ART', 'MISC', 'PER', 'FACILITY',
'ORGANIZATION', 'NAT_REL_POL', # Romanian
'geogName', 'orgName', 'persName', 'placeName' # Polish
}
def find_named_entity(start, x_ray, doc, is_kfx, codec):
len_limit = 3 if x_ray.lang == 'en' else 2
for ent in doc.ents:
if ent.label_ not in NER_LABELS:
continue
text = re.sub(r'^\W+', '', ent.text)
text = re.sub(r'\W+$', '', text)
if x_ray.lang == 'en':
if re.match(r'c?hapter', text, re.IGNORECASE):
continue
text = re.sub(r"['’][sd]$", '', text)
text = re.sub(r'^(?:the|an?) ', '', text, flags=re.IGNORECASE)
if len(text) < len_limit or re.fullmatch(r'[\W\d]+', text):
continue
new_start_char = ent.start_char + ent.text.index(text)
if is_kfx:
ent_start = start + len(doc.text[:new_start_char])
ent_len = len(text)
else:
ent_start = start + len(doc.text[:new_start_char].encode(codec))
ent_len = len(text.encode(codec))
x_ray.search(text, ent.label_ in ['PERSON', 'PER', 'persName'],
ent_start, ent.sent.text, ent_len)