-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathArray.purs
506 lines (380 loc) · 20.9 KB
/
Array.purs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
module Test.Data.Array (testArray) where
import Prelude
import Data.Array ((:), (\\), (!!))
import Data.Array as A
import Data.Array.NonEmpty as NEA
import Data.Const (Const(..))
import Data.Foldable (for_, foldMapDefaultR, class Foldable, all, traverse_)
import Data.Traversable (scanl, scanr)
import Data.Maybe (Maybe(..), isNothing, fromJust)
import Data.Ord.Down (Down(..))
import Data.Tuple (Tuple(..), fst)
import Data.Unfoldable (replicateA)
import Effect (Effect)
import Effect.Console (log)
import Partial.Unsafe (unsafePartial)
import Test.Assert (assert)
import Test.Data.UndefinedOr (defined, undefined)
testArray :: Effect Unit
testArray = do
log "singleton should construct an array with a single value"
assert $ A.singleton 1 == [1]
assert $ A.singleton "foo" == ["foo"]
assert $ A.singleton nil == [[]]
log "range should create an inclusive array of integers for the specified start and end"
assert $ (A.range 0 5) == [0, 1, 2, 3, 4, 5]
assert $ (A.range 2 (-3)) == [2, 1, 0, -1, -2, -3]
log "replicate should produce an array containg an item a specified number of times"
assert $ A.replicate 3 true == [true, true, true]
assert $ A.replicate 1 "foo" == ["foo"]
assert $ A.replicate 0 "foo" == []
assert $ A.replicate (-1) "foo" == []
log "replicateA should perform the monadic action the correct number of times"
assert $ replicateA 3 (Just 1) == Just [1, 1, 1]
assert $ replicateA 1 (Just 1) == Just [1]
assert $ replicateA 0 (Just 1) == Just []
assert $ replicateA (-1) (Just 1) == Just []
log "replicateA should be stack safe"
for_ [1, 1000, 2000, 20000, 50000] \n -> do
assert $ replicateA n (Just unit) == Just (A.replicate n unit :: Array Unit)
-- some
-- many
log "null should return false for non-empty arrays"
assert $ A.null [1] == false
assert $ A.null [1, 2, 3] == false
log "null should return true for an empty array"
assert $ A.null nil == true
log "length should return the number of items in an array"
assert $ A.length nil == 0
assert $ A.length [1] == 1
assert $ A.length [1, 2, 3, 4, 5] == 5
log "cons should add an item to the start of an array"
assert $ 4 : [1, 2, 3] == [4, 1, 2, 3]
assert $ 1 : nil == [1]
log "snoc should add an item to the end of an array"
assert $ [1, 2, 3] `A.snoc` 4 == [1, 2, 3, 4]
assert $ nil `A.snoc` 1 == [1]
log "insert should add an item at the appropriate place in a sorted array"
assert $ A.insert 1.5 [1.0, 2.0, 3.0] == [1.0, 1.5, 2.0, 3.0]
assert $ A.insert 4 [1, 2, 3] == [1, 2, 3, 4]
assert $ A.insert 0 [1, 2, 3] == [0, 1, 2, 3]
log "insertBy should add an item at the appropriate place in a sorted array using the specified comparison"
assert $ A.insertBy (flip compare) 1.5 [1.0, 2.0, 3.0] == [1.0, 2.0, 3.0, 1.5]
assert $ A.insertBy (flip compare) 4 [1, 2, 3] == [4, 1, 2, 3]
assert $ A.insertBy (flip compare) 0 [1, 2, 3] == [1, 2, 3, 0]
log "head should return a Just-wrapped first value of a non-empty array"
assert $ A.head ["foo", "bar"] == Just "foo"
log "head should return Nothing for an empty array"
assert $ A.head nil == Nothing
log "last should return a Just-wrapped last value of a non-empty array"
assert $ A.last ["foo", "bar"] == Just "bar"
log "last should return Nothing for an empty array"
assert $ A.last nil == Nothing
log "tail should return a Just-wrapped array containing all the items in an array apart from the first for a non-empty array"
assert $ A.tail ["foo", "bar", "baz"] == Just ["bar", "baz"]
log "tail should return Nothing for an empty array"
assert $ A.tail nil == Nothing
log "init should return a Just-wrapped array containing all the items in an array apart from the first for a non-empty array"
assert $ A.init ["foo", "bar", "baz"] == Just ["foo", "bar"]
log "init should return Nothing for an empty array"
assert $ A.init nil == Nothing
log "uncons should return nothing when used on an empty array"
assert $ isNothing (A.uncons nil)
log "uncons should split an array into a head and tail record when there is at least one item"
let u1 = unsafePartial $ fromJust $ A.uncons [1]
assert $ u1.head == 1
assert $ u1.tail == []
let u2 = unsafePartial $ fromJust $ A.uncons [1, 2, 3]
assert $ u2.head == 1
assert $ u2.tail == [2, 3]
log "unsnoc should return nothing when used on an empty array"
assert $ isNothing (A.unsnoc nil)
log "unsnoc should split an array into an init and last record when there is at least one item"
let u3 = unsafePartial $ fromJust $ A.unsnoc [1]
assert $ u3.init == []
assert $ u3.last == 1
let u4 = unsafePartial $ fromJust $ A.unsnoc [1, 2, 3]
assert $ u4.init == [1, 2]
assert $ u4.last == 3
log "(!!) should return Just x when the index is within the bounds of the array"
assert $ [1, 2, 3] !! 0 == (Just 1)
assert $ [1, 2, 3] !! 1 == (Just 2)
assert $ [1, 2, 3] !! 2 == (Just 3)
log "(!!) should return Nothing when the index is outside of the bounds of the array"
assert $ [1, 2, 3] !! 6 == Nothing
assert $ [1, 2, 3] !! (-1) == Nothing
log "elem should return true if the array contains the given element at least once"
assert $ (A.elem 1 [1, 2, 1]) == true
assert $ (A.elem 4 [1, 2, 1]) == false
log "notElem should return true if the array does not contain the given element"
assert $ (A.notElem 1 [1, 2, 1]) == false
assert $ (A.notElem 4 [1, 2, 1]) == true
log "elemIndex should return the index of an item that a predicate returns true for in an array"
assert $ (A.elemIndex 1 [1, 2, 1]) == Just 0
assert $ (A.elemIndex 4 [1, 2, 1]) == Nothing
log "elemLastIndex should return the last index of an item in an array"
assert $ (A.elemLastIndex 1 [1, 2, 1]) == Just 2
assert $ (A.elemLastIndex 4 [1, 2, 1]) == Nothing
log "find should return the first element for which a predicate returns true in an array"
assert $ (A.find (_ /= 1) [1, 2, 1]) == Just 2
assert $ (A.find (_ == 3) [1, 2, 1]) == Nothing
log "findMap should return the mapping of the first element that satisfies the given predicate"
assert $ (A.findMap (\x -> if x > 3 then Just x else Nothing) [1, 2, 4]) == Just 4
assert $ (A.findMap (\x -> if x > 3 then Just x else Nothing) [1, 2, 1]) == Nothing
assert $ (A.findMap (\x -> if x > 3 then Just x else Nothing) [4, 1, 5]) == Just 4
log "findIndex should return the index of an item that a predicate returns true for in an array"
assert $ (A.findIndex (_ /= 1) [1, 2, 1]) == Just 1
assert $ (A.findIndex (_ == 3) [1, 2, 1]) == Nothing
log "findLastIndex should return the last index of an item in an array"
assert $ (A.findLastIndex (_ /= 1) [2, 1, 2]) == Just 2
assert $ (A.findLastIndex (_ == 3) [2, 1, 2]) == Nothing
log "insertAt should add an item at the specified index"
assert $ (A.insertAt 0 1 [2, 3]) == Just [1, 2, 3]
assert $ (A.insertAt 1 1 [2, 3]) == Just [2, 1, 3]
assert $ (A.insertAt 2 1 [2, 3]) == Just [2, 3, 1]
log "insertAt should return Nothing if the index is out of A.range"
assert $ (A.insertAt 2 1 nil) == Nothing
log "deleteAt should remove an item at the specified index"
assert $ (A.deleteAt 0 [1, 2, 3]) == Just [2, 3]
assert $ (A.deleteAt 1 [1, 2, 3]) == Just [1, 3]
log "deleteAt should return Nothing if the index is out of A.range"
assert $ (A.deleteAt 1 nil) == Nothing
log "updateAt should replace an item at the specified index"
assert $ (A.updateAt 0 9 [1, 2, 3]) == Just [9, 2, 3]
assert $ (A.updateAt 1 9 [1, 2, 3]) == Just [1, 9, 3]
log "updateAt should return Nothing if the index is out of A.range"
assert $ (A.updateAt 1 9 nil) == Nothing
log "modifyAt should update an item at the specified index"
assert $ (A.modifyAt 0 (_ + 1) [1, 2, 3]) == Just [2, 2, 3]
assert $ (A.modifyAt 1 (_ + 1) [1, 2, 3]) == Just [1, 3, 3]
log "modifyAt should return Nothing if the index is out of A.range"
assert $ (A.modifyAt 1 (_ + 1) nil) == Nothing
log "alterAt should update an item at the specified index when the function returns Just"
assert $ (A.alterAt 0 (Just <<< (_ + 1)) [1, 2, 3]) == Just [2, 2, 3]
assert $ (A.alterAt 1 (Just <<< (_ + 1)) [1, 2, 3]) == Just [1, 3, 3]
log "alterAt should drop an item at the specified index when the function returns Nothing"
assert $ (A.alterAt 0 (const Nothing) [1, 2, 3]) == Just [2, 3]
assert $ (A.alterAt 1 (const Nothing) [1, 2, 3]) == Just [1, 3]
log "alterAt should return Nothing if the index is out of A.range"
assert $ (A.alterAt 1 (Just <<< (_ + 1)) nil) == Nothing
log "intersperse should return the original array when given an array with zero or one elements"
assert $ (A.intersperse " " []) == []
assert $ (A.intersperse " " ["a"]) == ["a"]
log "intersperse should insert the given element in-between each element in an array with two or more elements"
assert $ (A.intersperse " " ["a", "b"]) == ["a", " ", "b"]
assert $ (A.intersperse 0 [ 1, 2, 3, 4, 5 ]) == [ 1, 0, 2, 0, 3, 0, 4, 0, 5 ]
log "reverse should reverse the order of items in an array"
assert $ (A.reverse [1, 2, 3]) == [3, 2, 1]
assert $ (A.reverse nil) == nil
log "concat should join an array of arrays"
assert $ (A.concat [[1, 2], [3, 4]]) == [1, 2, 3, 4]
assert $ (A.concat [[1], nil]) == [1]
assert $ (A.concat [nil, nil]) == nil
log "concatMap should be equivalent to (concat <<< map)"
assert $ A.concatMap doubleAndOrig [1, 2, 3] == A.concat (map doubleAndOrig [1, 2, 3])
log "filter should remove items that don't match a predicate"
assert $ A.filter odd (A.range 0 10) == [1, 3, 5, 7, 9]
log "splitAt should split the array at the given number of elements"
assert $ A.splitAt 2 ([] :: Array Int) == { before: [], after: [] }
assert $ A.splitAt 3 [1, 2, 3, 4, 5] == { before: [1, 2, 3], after: [4, 5] }
assert $ A.splitAt 1 [1, 2, 3] == { before: [1], after: [2, 3] }
assert $ A.splitAt 3 [1, 2, 3] == { before: [1, 2, 3], after: [] }
assert $ A.splitAt 4 [1, 2, 3] == { before: [1, 2, 3], after: [] }
assert $ A.splitAt 0 [1, 2, 3] == { before: [], after: [1, 2, 3] }
assert $ A.splitAt (-1) [1, 2, 3] == { before: [], after: [1, 2, 3] }
log "filterA should remove items that don't match a predicate while using an applicative behaviour"
assert $ A.filterA (Just <<< odd) (A.range 0 10) == Just [1, 3, 5, 7, 9]
assert $ A.filterA (const Nothing) (A.range 0 10) == Nothing
log "filterA should apply effects in the right order"
assert $ A.filterA (Const <<< show) (A.range 1 5) == Const "12345"
log "mapMaybe should transform every item in an array, throwing out Nothing values"
assert $ A.mapMaybe (\x -> if x /= 0 then Just x else Nothing) [0, 1, 0, 0, 2, 3] == [1, 2, 3]
log "catMaybe should take an array of Maybe values and throw out Nothings"
assert $ A.catMaybes [Nothing, Just 2, Nothing, Just 4] == [2, 4]
log "mapWithIndex applies a function with an index for every element"
assert $ A.mapWithIndex (\i x -> x - i) [9,8,7,6,5] == [9,7,5,3,1]
log "updateAtIndices changes the elements at specified indices"
assert $ A.updateAtIndices
[Tuple 0 false, Tuple 2 false, Tuple 8 false]
[true, true, true, true] ==
[false, true, false, true]
log "modifyAtIndices modifies the elements at specified indices"
assert $ A.modifyAtIndices [0, 2, 8] not [true, true, true, true] ==
[false, true, false, true]
log "transpose swaps rows and columns for a regular two-dimension array"
assert $ A.transpose [[1,2,3], [4,5,6], [7,8,9]] ==
[[1,4,7], [2,5,8], [3,6,9]]
log "transpose skips elements when rows don't match"
assert $ A.transpose [[10,11], [20], [30,31,32]] ==
[[10,20,30], [11,31], [32]]
log "transpose [] == []"
assert $ A.transpose [] == ([] :: Array (Array Int))
log "transpose (singleton []) == []"
assert $ A.transpose (A.singleton []) == ([] :: Array (Array Int))
log "scanl should return an array that stores the accumulated value at each step"
assert $ A.scanl (+) 0 [1,2,3] == [1, 3, 6]
assert $ A.scanl (-) 10 [1,2,3] == [9, 7, 4]
log "scanl should return the same results as its Foldable counterpart"
assert $ A.scanl (+) 0 [1,2,3] == scanl (+) 0 [1,2,3]
assert $ A.scanl (-) 10 [1,2,3] == scanl (-) 10 [1,2,3]
log "scanr should return an array that stores the accumulated value at each step"
assert $ A.scanr (+) 0 [1,2,3] == [6,5,3]
assert $ A.scanr (flip (-)) 10 [1,2,3] == [4,5,7]
log "scanr should return the same results as its Foldable counterpart"
assert $ A.scanr (+) 0 [1,2,3] == scanr (+) 0 [1,2,3]
assert $ A.scanr (flip (-)) 10 [1,2,3] == scanr (flip (-)) 10 [1,2,3]
log "sort should reorder a list into ascending order based on the result of compare"
assert $ A.sort [1, 3, 2, 5, 6, 4] == [1, 2, 3, 4, 5, 6]
assert $ A.sort [defined 1, undefined, defined 2] == [undefined, defined 1, defined 2]
log "sortBy should reorder a list into ascending order based on the result of a comparison function"
assert $ A.sortBy (flip compare) [1, 3, 2, 5, 6, 4] == [6, 5, 4, 3, 2, 1]
log "sortBy should not reorder elements that are equal according to a comparison function"
let s1 = map (Tuple "a") (A.range 1 100)
assert $ A.sortBy (comparing fst) s1 == s1
log "sortWith should reorder a list into ascending order based on the result of compare over a projection"
assert $ A.sortWith identity [1, 3, 2, 5, 6, 4] == [1, 2, 3, 4, 5, 6]
log "sortWith should not reorder elements that are equal according to a projection"
let s2 = map (Tuple "a") (A.range 1 100)
assert $ A.sortWith fst s2 == s2
log "take should keep the specified number of items from the front of an array, discarding the rest"
assert $ (A.take 1 [1, 2, 3]) == [1]
assert $ (A.take 2 [1, 2, 3]) == [1, 2]
assert $ (A.take 1 nil) == nil
log "takeWhile should keep all values that match a predicate from the front of an array"
assert $ (A.takeWhile (_ /= 2) [1, 2, 3]) == [1]
assert $ (A.takeWhile (_ /= 3) [1, 2, 3]) == [1, 2]
assert $ (A.takeWhile (_ /= 1) nil) == nil
log "take should keep the specified number of items from the end of an array, discarding the rest"
assert $ (A.takeEnd 1 [1, 2, 3]) == [3]
assert $ (A.takeEnd 2 [1, 2, 3]) == [2, 3]
assert $ (A.takeEnd 1 nil) == nil
log "drop should remove the specified number of items from the front of an array"
assert $ (A.drop 1 [1, 2, 3]) == [2, 3]
assert $ (A.drop 2 [1, 2, 3]) == [3]
assert $ (A.drop 1 nil) == nil
log "dropWhile should remove all values that match a predicate from the front of an array"
assert $ (A.dropWhile (_ /= 1) [1, 2, 3]) == [1, 2, 3]
assert $ (A.dropWhile (_ /= 2) [1, 2, 3]) == [2, 3]
assert $ (A.dropWhile (_ /= 1) nil) == nil
log "drop should remove the specified number of items from the end of an array"
assert $ (A.dropEnd 1 [1, 2, 3]) == [1, 2]
assert $ (A.dropEnd 2 [1, 2, 3]) == [1]
assert $ (A.dropEnd 1 nil) == nil
log "take and drop should treat negative arguments as zero"
assert $ (A.take (-2) [1, 2, 3]) == nil
assert $ (A.drop (-2) [1, 2, 3]) == [1, 2, 3]
log "span should split an array in two based on a predicate"
let testSpan { p, input, init_, rest_ } = do
let result = A.span p input
assert $ result.init == init_
assert $ result.rest == rest_
let oneToSeven = [1, 2, 3, 4, 5, 6, 7]
testSpan { p: (_ < 4), input: oneToSeven, init_: [1, 2, 3], rest_: [4, 5, 6, 7] }
log "span with all elements satisfying the predicate"
testSpan { p: const true, input: oneToSeven, init_: oneToSeven, rest_: [] }
log "span with no elements satisfying the predicate"
testSpan { p: const false, input: oneToSeven, init_: [], rest_: oneToSeven }
log "span with large inputs: 10000"
let testBigSpan n =
testSpan { p: (_ < n), input: A.range 1 n, init_: A.range 1 (n-1), rest_: [n] }
testBigSpan 10000
log "span with large inputs: 40000"
testBigSpan 40000
log "span with large inputs: 100000"
testBigSpan 100000
log "group should group consecutive equal elements into arrays"
assert $ A.group [1, 2, 2, 3, 3, 3, 1] == [nea [1], nea [2, 2], nea [3, 3, 3], nea [1]]
log "groupAll should group equal elements into arrays"
assert $ A.groupAll [1, 2, 2, 3, 3, 3, 1] == [nea [1, 1], nea [2, 2], nea [3, 3, 3]]
log "groupBy should group consecutive equal elements into arrays based on an equivalence relation"
assert $ A.groupBy (\x y -> odd x && odd y) [1, 1, 2, 2, 3, 3] == [nea [1, 1], nea [2], nea [2], nea [3, 3]]
log "groupBy should be stable"
assert $ A.groupBy (\_ _ -> true) [1, 2, 3] == [nea [1, 2, 3]]
log "groupAllBy should group equal elements into arrays based on the result of a comparison function"
assert $ A.groupAllBy (comparing Down) [1, 3, 2, 4, 3, 3] == [nea [4], nea [3, 3, 3], nea [2], nea [1]]
log "groupAllBy should be stable"
assert $ A.groupAllBy (\_ _ -> EQ) [1, 2, 3] == [nea [1, 2, 3]]
log "nub should remove duplicate elements from the list, keeping the first occurence"
assert $ A.nub [1, 2, 2, 3, 4, 1] == [1, 2, 3, 4]
log "nub should preserve order"
assert $ A.nub [1, 3, 4, 2, 2, 1] == [1, 3, 4, 2]
log "nubEq should remove duplicate elements from the list, keeping the first occurence"
assert $ A.nubEq [1, 2, 2, 3, 4, 1] == [1, 2, 3, 4]
log "nubEq should preserve order"
assert $ A.nubEq [1, 3, 4, 2, 2, 1] == [1, 3, 4, 2]
log "nubBy should remove duplicate items from the list using a supplied predicate"
assert $ A.nubBy compare [1, 3, 4, 2, 2, 1] == [1, 3, 4, 2]
log "nubByEq should remove duplicate items from the list using a supplied predicate"
let nubPred = \x y -> if odd x then false else x == y
assert $ A.nubByEq nubPred [1, 2, 2, 3, 3, 4, 4, 1] == [1, 2, 3, 3, 4, 1]
log "union should produce the union of two arrays"
assert $ A.union [1, 2, 3] [2, 3, 4] == [1, 2, 3, 4]
assert $ A.union [1, 1, 2, 3] [2, 3, 4] == [1, 1, 2, 3, 4]
log "unionBy should produce the union of two arrays using the specified equality relation"
assert $ A.unionBy (\_ y -> y < 5) [1, 2, 3] [2, 3, 4, 5, 6] == [1, 2, 3, 5, 6]
log "delete should remove the first matching item from an array"
assert $ A.delete 1 [1, 2, 1] == [2, 1]
assert $ A.delete 2 [1, 2, 1] == [1, 1]
log "deleteBy should remove the first equality-relation-matching item from an array"
assert $ A.deleteBy (/=) 2 [1, 2, 1] == [2, 1]
assert $ A.deleteBy (/=) 1 [1, 2, 1] == [1, 1]
log "(\\\\) should return the difference between two lists"
assert $ [1, 2, 3, 4, 3, 2, 1] \\ [1, 1, 2, 3] == [4, 3, 2]
log "intersect should return the intersection of two arrays"
assert $ A.intersect [1, 2, 3, 4, 3, 2, 1] [1, 1, 2, 3] == [1, 2, 3, 3, 2, 1]
log "intersectBy should return the intersection of two arrays using the specified equivalence relation"
assert $ A.intersectBy (\x y -> (x * 2) == y) [1, 2, 3] [2, 6] == [1, 3]
log "zipWith should use the specified function to zip two lists together"
assert $ A.zipWith (\x y -> [show x, y]) [1, 2, 3] ["a", "b", "c"] == [["1", "a"], ["2", "b"], ["3", "c"]]
log "zipWithA should use the specified function to zip two lists together"
assert $ A.zipWithA (\x y -> Just $ Tuple x y) [1, 2, 3] ["a", "b", "c"] == Just [Tuple 1 "a", Tuple 2 "b", Tuple 3 "c"]
log "zip should use the specified function to zip two lists together"
assert $ A.zip [1, 2, 3] ["a", "b", "c"] == [Tuple 1 "a", Tuple 2 "b", Tuple 3 "c"]
log "unzip should deconstruct a list of tuples into a tuple of lists"
assert $ A.unzip [Tuple 1 "a", Tuple 2 "b", Tuple 3 "c"] == Tuple [1, 2, 3] ["a", "b", "c"]
log "any should return true if at least one array element satisfy the given predicate"
assert $ not $ A.any (_ > 0) []
assert $ A.any (_ > 0) [-1, 0, 1]
assert $ not $ A.any (_ > 0) [-1, -2, -3]
log "all should return true if all the array elements satisfy the given predicate"
assert $ A.all (_ > 0) []
assert $ A.all (_ > 0) [1, 2, 3]
assert $ not $ A.all (_ > 0) [-1, -2, -3]
log "foldM should perform a fold using a monadic step function"
assert $ A.foldM (\x y -> Just (x + y)) 0 (A.range 1 10) == Just 55
assert $ A.foldM (\_ _ -> Nothing) 0 (A.range 1 10) == Nothing
log "fromFoldable"
for_ [[], [1], [1,2], [1,2,3,4,5]] \xs -> do
assert $ A.fromFoldable xs == xs
log "fromFoldable is stack safe"
for_ [1, 1000, 10000, 20000, 50000] \n -> do
let elem = 0
let arr = A.fromFoldable (Replicated n elem)
assert $ A.length arr == n
assert $ all (_ == elem) arr
log "toUnfoldable"
let toUnfoldableId xs = A.toUnfoldable xs == xs
traverse_ (assert <<< toUnfoldableId)
[ []
, [1]
, [1,2,3]
, [2,3,1]
, [4,0,0,1,25,36,458,5842,23757]
]
nea :: Array ~> NEA.NonEmptyArray
nea = unsafePartial fromJust <<< NEA.fromArray
nil :: Array Int
nil = []
odd :: Int -> Boolean
odd n = n `mod` 2 /= zero
doubleAndOrig :: Int -> Array Int
doubleAndOrig x = [x * 2, x]
data Replicated a = Replicated Int a
instance foldableReplicated :: Foldable Replicated where
foldr f z (Replicated n x) = applyN n (f x) z
foldl f z (Replicated n x) = applyN n (flip f x) z
foldMap = foldMapDefaultR
applyN :: forall a. Int -> (a -> a) -> a -> a
applyN n f x
| n <= 0 = x
| otherwise = applyN (n - 1) f (f x)