-
-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathstandard_parameters_lead_acid.py
502 lines (413 loc) · 18 KB
/
standard_parameters_lead_acid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#
# Standard parameters for lead-acid battery models
#
"""
Standard Parameters for lead-acid battery models
"""
import pybamm
import numpy as np
from scipy import constants
# --------------------------------------------------------------------------------------
"File Layout:"
# 1. Dimensional Parameters
# 2. Dimensional Functions
# 3. Scalings
# 4. Dimensionless Parameters
# 5. Dimensionless Functions
# 6. Input current
# --------------------------------------------------------------------------------------
"1. Dimensional Parameters"
# Physical constants
R = pybamm.Scalar(constants.R)
F = pybamm.Scalar(constants.physical_constants["Faraday constant"][0])
T_ref = pybamm.Parameter("Reference temperature [K]")
# Macroscale geometry
L_n = pybamm.geometric_parameters.L_n
L_s = pybamm.geometric_parameters.L_s
L_p = pybamm.geometric_parameters.L_p
L_x = pybamm.geometric_parameters.L_x
L_y = pybamm.geometric_parameters.L_y
L_z = pybamm.geometric_parameters.L_z
A_cc = pybamm.geometric_parameters.A_cc
W = L_y
H = L_z
A_cs = A_cc
delta = L_x / H
# Electrical
I_typ = pybamm.electrical_parameters.I_typ
Q = pybamm.electrical_parameters.Q
C_rate = pybamm.electrical_parameters.C_rate
n_electrodes_parallel = pybamm.electrical_parameters.n_electrodes_parallel
i_typ = pybamm.electrical_parameters.i_typ
voltage_low_cut_dimensional = pybamm.electrical_parameters.voltage_low_cut_dimensional
voltage_high_cut_dimensional = pybamm.electrical_parameters.voltage_high_cut_dimensional
# Electrolyte properties
c_e_typ = pybamm.Parameter("Typical electrolyte concentration [mol.m-3]")
t_plus = pybamm.Parameter("Cation transference number")
V_w = pybamm.Parameter("Partial molar volume of water [m3.mol-1]")
V_plus = pybamm.Parameter("Partial molar volume of cations [m3.mol-1]")
V_minus = pybamm.Parameter("Partial molar volume of anions [m3.mol-1]")
V_e = V_minus + V_plus # Partial molar volume of electrolyte [m3.mol-1]
nu_plus = pybamm.Parameter("Cation stoichiometry")
nu_minus = pybamm.Parameter("Anion stoichiometry")
nu = nu_plus + nu_minus
# Other species properties
c_ox_init_dim = pybamm.Parameter("Initial oxygen concentration [mol.m-3]")
c_ox_typ = c_e_typ # pybamm.Parameter("Typical oxygen concentration [mol.m-3]")
# Electrode properties
sigma_n_dim = pybamm.Parameter("Negative electrode conductivity [S.m-1]")
sigma_p_dim = pybamm.Parameter("Positive electrode conductivity [S.m-1]")
# In lead-acid the current collector and electrodes are the same (same conductivity)
sigma_cn_dimensional = sigma_n_dim
sigma_cp_dimensional = sigma_p_dim
# Microstructure
a_n_dim = pybamm.geometric_parameters.a_n_dim
a_p_dim = pybamm.geometric_parameters.a_p_dim
b_e_n = pybamm.geometric_parameters.b_e_n
b_e_s = pybamm.geometric_parameters.b_e_s
b_e_p = pybamm.geometric_parameters.b_e_p
b_s_n = pybamm.geometric_parameters.b_s_n
b_s_s = pybamm.geometric_parameters.b_s_s
b_s_p = pybamm.geometric_parameters.b_s_p
xi_n = pybamm.Parameter("Negative electrode morphological parameter")
xi_p = pybamm.Parameter("Positive electrode morphological parameter")
# no binder
epsilon_inactive_n = pybamm.Scalar(0)
epsilon_inactive_s = pybamm.Scalar(0)
epsilon_inactive_p = pybamm.Scalar(0)
# Electrochemical reactions
# Main
j0_n_S_ref_dimensional = pybamm.Parameter(
"Negative electrode reference exchange-current density [A.m-2]"
)
j0_p_S_ref_dimensional = pybamm.Parameter(
"Positive electrode reference exchange-current density [A.m-2]"
)
s_plus_n_S_dim = pybamm.Parameter("Negative electrode cation signed stoichiometry")
s_plus_p_S_dim = pybamm.Parameter("Positive electrode cation signed stoichiometry")
ne_n_S = pybamm.Parameter("Negative electrode electrons in reaction")
ne_p_S = pybamm.Parameter("Positive electrode electrons in reaction")
C_dl_n_dimensional = pybamm.Parameter(
"Negative electrode double-layer capacity [F.m-2]"
)
C_dl_p_dimensional = pybamm.Parameter(
"Positive electrode double-layer capacity [F.m-2]"
)
# Oxygen
j0_n_Ox_ref_dimensional = pybamm.Parameter(
"Negative electrode reference exchange-current density (oxygen) [A.m-2]"
)
j0_p_Ox_ref_dimensional = pybamm.Parameter(
"Positive electrode reference exchange-current density (oxygen) [A.m-2]"
)
s_plus_Ox_dim = pybamm.Parameter("Signed stoichiometry of cations (oxygen reaction)")
s_w_Ox_dim = pybamm.Parameter("Signed stoichiometry of water (oxygen reaction)")
s_ox_Ox_dim = pybamm.Parameter("Signed stoichiometry of oxygen (oxygen reaction)")
ne_Ox = pybamm.Parameter("Electrons in oxygen reaction")
U_Ox_dim = pybamm.Parameter("Oxygen reference OCP vs SHE [V]")
# Hydrogen
j0_n_Hy_ref_dimensional = pybamm.Parameter(
"Negative electrode reference exchange-current density (hydrogen) [A.m-2]"
)
j0_p_Hy_ref_dimensional = pybamm.Parameter(
"Positive electrode reference exchange-current density (hydrogen) [A.m-2]"
)
s_plus_Hy_dim = pybamm.Parameter("Signed stoichiometry of cations (hydrogen reaction)")
s_hy_Hy_dim = pybamm.Parameter("Signed stoichiometry of hydrogen (hydrogen reaction)")
ne_Hy = pybamm.Parameter("Electrons in hydrogen reaction")
U_Hy_dim = pybamm.Parameter("Hydrogen reference OCP vs SHE [V]")
# Electrolyte properties
M_w = pybamm.Parameter("Molar mass of water [kg.mol-1]")
M_plus = pybamm.Parameter("Molar mass of cations [kg.mol-1]")
M_minus = pybamm.Parameter("Molar mass of anions [kg.mol-1]")
M_e = M_minus + M_plus # Molar mass of electrolyte [kg.mol-1]
DeltaVliq_n = (
V_minus - V_plus
) # Net Molar Volume consumed in electrolyte (neg) [m3.mol-1]
DeltaVliq_p = (
2 * V_w - V_minus - 3 * V_plus
) # Net Molar Volume consumed in electrolyte (neg) [m3.mol-1]
# Other species properties
D_ox_dimensional = pybamm.Parameter("Oxygen diffusivity [m2.s-1]")
D_hy_dimensional = pybamm.Parameter("Hydrogen diffusivity [m2.s-1]")
V_ox = pybamm.Parameter("Partial molar volume of oxygen molecules [m3.mol-1]")
V_hy = pybamm.Parameter("Partial molar volume of hydrogen molecules [m3.mol-1]")
M_ox = pybamm.Parameter("Molar mass of oxygen molecules [kg.mol-1]")
M_hy = pybamm.Parameter("Molar mass of hydrogen molecules [kg.mol-1]")
# Electrode properties
V_Pb = pybamm.Parameter("Molar volume of lead [m3.mol-1]")
V_PbO2 = pybamm.Parameter("Molar volume of lead-dioxide [m3.mol-1]")
V_PbSO4 = pybamm.Parameter("Molar volume of lead sulfate [m3.mol-1]")
DeltaVsurf_n = V_Pb - V_PbSO4 # Net Molar Volume consumed in neg electrode [m3.mol-1]
DeltaVsurf_p = V_PbSO4 - V_PbO2 # Net Molar Volume consumed in pos electrode [m3.mol-1]
d_n = pybamm.Parameter("Negative electrode pore size [m]")
d_p = pybamm.Parameter("Positive electrode pore size [m]")
eps_n_max = pybamm.Parameter("Maximum porosity of negative electrode")
eps_s_max = pybamm.Parameter("Maximum porosity of separator")
eps_p_max = pybamm.Parameter("Maximum porosity of positive electrode")
Q_n_max_dimensional = pybamm.Parameter("Negative electrode volumetric capacity [C.m-3]")
Q_p_max_dimensional = pybamm.Parameter("Positive electrode volumetric capacity [C.m-3]")
# Fake thermal
Delta_T = pybamm.Scalar(0)
# --------------------------------------------------------------------------------------
"2. Dimensional Functions"
def D_e_dimensional(c_e, T):
"Dimensional diffusivity in electrolyte"
return pybamm.FunctionParameter("Electrolyte diffusivity [m2.s-1]", c_e)
def kappa_e_dimensional(c_e, T):
"Dimensional electrolyte conductivity"
return pybamm.FunctionParameter("Electrolyte conductivity [S.m-1]", c_e)
def chi_dimensional(c_e):
return pybamm.FunctionParameter("Darken thermodynamic factor", c_e)
def c_w_dimensional(c_e, c_ox=0, c_hy=0):
"""
Water concentration [mol.m-3], from thermodynamics. c_k in [mol.m-3].
"""
return (1 - c_e * V_e - c_ox * V_ox - c_hy * V_hy) / V_w
def c_T(c_e, c_ox=0, c_hy=0):
"""
Total liquid molarity [mol.m-3], from thermodynamics. c_k in [mol.m-3].
"""
return (1 + (2 * V_w - V_e) * c_e + (V_w - V_ox) * c_ox + (V_w - V_hy) * c_hy) / V_w
def rho_dimensional(c_e, c_ox=0, c_hy=0):
"""
Dimensional density of electrolyte [kg.m-3], from thermodynamics. c_k in [mol.m-3].
"""
return (
M_w / V_w
+ (M_e - V_e * M_w / V_w) * c_e
+ (M_ox - V_ox * M_w / V_w) * c_ox
+ (M_hy - V_hy * M_w / V_w) * c_hy
)
def m_dimensional(c_e):
"""
Dimensional electrolyte molar mass [mol.kg-1], from thermodynamics.
c_e in [mol.m-3].
"""
return c_e * V_w / ((1 - c_e * V_e) * M_w)
def mu_dimensional(c_e):
"""
Dimensional viscosity of electrolyte [kg.m-1.s-1].
"""
return pybamm.FunctionParameter("Electrolyte viscosity [kg.m-1.s-1]", c_e)
def U_n_dimensional(c_e, T):
"Dimensional open-circuit voltage in the negative electrode [V]"
return pybamm.FunctionParameter(
"Negative electrode open-circuit potential [V]", m_dimensional(c_e)
)
def U_p_dimensional(c_e, T):
"Dimensional open-circuit voltage in the positive electrode [V]"
return pybamm.FunctionParameter(
"Positive electrode open-circuit potential [V]", m_dimensional(c_e)
)
D_e_typ = D_e_dimensional(c_e_typ, T_ref)
rho_typ = rho_dimensional(c_e_typ)
mu_typ = mu_dimensional(c_e_typ)
U_n_ref = pybamm.FunctionParameter(
"Negative electrode open-circuit potential [V]", pybamm.Scalar(1)
)
U_p_ref = pybamm.FunctionParameter(
"Positive electrode open-circuit potential [V]", pybamm.Scalar(1)
)
# --------------------------------------------------------------------------------------
"3. Scales"
# concentrations
electrolyte_concentration_scale = c_e_typ
# electrical
potential_scale = R * T_ref / F
current_scale = i_typ
interfacial_current_scale_n = i_typ / (a_n_dim * L_x)
interfacial_current_scale_p = i_typ / (a_p_dim * L_x)
velocity_scale = i_typ / (c_e_typ * F) # Reaction velocity scale
# Discharge timescale
tau_discharge = F * c_e_typ * L_x / i_typ
# Reaction timescales
# should this be * F?
tau_r_n = 1 / (j0_n_S_ref_dimensional * a_n_dim * c_e_typ ** 0.5)
tau_r_p = 1 / (j0_p_S_ref_dimensional * a_p_dim * c_e_typ ** 0.5)
# Electrolyte diffusion timescale
tau_diffusion_e = L_x ** 2 / D_e_typ
# Choose discharge timescale
timescale = tau_discharge
# --------------------------------------------------------------------------------------
"4. Dimensionless Parameters"
# Macroscale Geometry
l_n = pybamm.geometric_parameters.l_n
l_s = pybamm.geometric_parameters.l_s
l_p = pybamm.geometric_parameters.l_p
l_y = pybamm.geometric_parameters.l_y
l_z = pybamm.geometric_parameters.l_z
# In lead-acid the current collector and electrodes are the same (same thickness)
l_cn = l_n
l_cp = l_p
# Tab geometry
l_tab_n = pybamm.geometric_parameters.l_tab_n
centre_y_tab_n = pybamm.geometric_parameters.centre_y_tab_n
centre_z_tab_n = pybamm.geometric_parameters.centre_z_tab_n
l_tab_p = pybamm.geometric_parameters.l_tab_p
centre_y_tab_p = pybamm.geometric_parameters.centre_y_tab_p
centre_z_tab_p = pybamm.geometric_parameters.centre_z_tab_p
# Diffusive kinematic relationship coefficient
omega_i = c_e_typ * M_e / rho_typ * (t_plus + M_minus / M_e)
# Migrative kinematic relationship coefficient (electrolyte)
omega_c_e = c_e_typ * M_e / rho_typ * (1 - M_w * V_e / V_w * M_e)
C_e = tau_diffusion_e / tau_discharge
# Ratio of viscous pressure scale to osmotic pressure scale (electrolyte)
pi_os_e = mu_typ * velocity_scale * L_x / (d_n ** 2 * R * T_ref * c_e_typ)
# ratio of electrolyte concentration to electrode concentration, undefined
gamma_e = pybamm.Scalar(1)
# Reynolds number
Re = rho_typ * velocity_scale * L_x / mu_typ
# Other species properties
# Oxygen
curlyD_ox = D_ox_dimensional / D_e_typ
omega_c_ox = c_e_typ * M_ox / rho_typ * (1 - M_w * V_ox / V_w * M_ox)
# Hydrogen
curlyD_hy = D_hy_dimensional / D_e_typ
omega_c_hy = c_e_typ * M_hy / rho_typ * (1 - M_w * V_hy / V_w * M_hy)
# Electrode Properties
sigma_cn = sigma_cn_dimensional * potential_scale / i_typ / L_x
sigma_n = sigma_n_dim * potential_scale / current_scale / L_x
sigma_p = sigma_p_dim * potential_scale / current_scale / L_x
sigma_cp = sigma_cp_dimensional * potential_scale / i_typ / L_x
sigma_n_prime = sigma_n * delta ** 2
sigma_p_prime = sigma_p * delta ** 2
delta_pore_n = 1 / (a_n_dim * L_x)
delta_pore_p = 1 / (a_p_dim * L_x)
Q_n_max = Q_n_max_dimensional / (c_e_typ * F)
Q_p_max = Q_p_max_dimensional / (c_e_typ * F)
beta_U_n = 1 / Q_n_max
beta_U_p = -1 / Q_p_max
# Electrochemical reactions
# Main
s_plus_n_S = s_plus_n_S_dim / ne_n_S
s_plus_p_S = s_plus_p_S_dim / ne_p_S
s_n = -(s_plus_n_S + t_plus) # Dimensionless rection rate (neg)
s_p = -(s_plus_p_S + t_plus) # Dimensionless rection rate (pos)
s = pybamm.Concatenation(
pybamm.FullBroadcast(s_n, ["negative electrode"], "current collector"),
pybamm.FullBroadcast(0, ["separator"], "current collector"),
pybamm.FullBroadcast(s_p, ["positive electrode"], "current collector"),
)
j0_n_S_ref = j0_n_S_ref_dimensional / interfacial_current_scale_n
j0_p_S_ref = j0_p_S_ref_dimensional / interfacial_current_scale_p
C_dl_n = (
C_dl_n_dimensional * potential_scale / interfacial_current_scale_n / tau_discharge
)
C_dl_p = (
C_dl_p_dimensional * potential_scale / interfacial_current_scale_p / tau_discharge
)
ne_n = ne_n_S
ne_p = ne_p_S
# Oxygen
s_plus_Ox = s_plus_Ox_dim / ne_Ox
s_w_Ox = s_w_Ox_dim / ne_Ox
s_ox_Ox = s_ox_Ox_dim / ne_Ox
j0_n_Ox_ref = j0_n_Ox_ref_dimensional / interfacial_current_scale_n
j0_p_Ox_ref = j0_p_Ox_ref_dimensional / interfacial_current_scale_p
U_n_Ox = (U_Ox_dim - U_n_ref) / potential_scale
U_p_Ox = (U_Ox_dim - U_p_ref) / potential_scale
# Hydrogen
s_plus_Hy = s_plus_Hy_dim / ne_Hy
s_hy_Hy = s_hy_Hy_dim / ne_Hy
j0_n_Hy_ref = j0_n_Hy_ref_dimensional / interfacial_current_scale_n
j0_p_Hy_ref = j0_p_Hy_ref_dimensional / interfacial_current_scale_p
U_n_Hy = (U_Hy_dim - U_n_ref) / potential_scale
U_p_Hy = (U_Hy_dim - U_p_ref) / potential_scale
# Electrolyte properties
beta_surf_n = -c_e_typ * DeltaVsurf_n / ne_n_S # Molar volume change (lead)
beta_surf_p = -c_e_typ * DeltaVsurf_p / ne_p_S # Molar volume change (lead dioxide)
beta_surf = pybamm.Concatenation(
pybamm.FullBroadcast(beta_surf_n, ["negative electrode"], "current collector"),
pybamm.FullBroadcast(0, ["separator"], "current collector"),
pybamm.FullBroadcast(beta_surf_p, ["positive electrode"], "current collector"),
)
beta_liq_n = -c_e_typ * DeltaVliq_n / ne_n_S # Molar volume change (electrolyte, neg)
beta_liq_p = -c_e_typ * DeltaVliq_p / ne_p_S # Molar volume change (electrolyte, pos)
beta_n = (beta_surf_n + beta_liq_n) * pybamm.Parameter("Volume change factor")
beta_p = (beta_surf_p + beta_liq_p) * pybamm.Parameter("Volume change factor")
beta = pybamm.Concatenation(
pybamm.FullBroadcast(beta_n, "negative electrode", "current collector"),
pybamm.FullBroadcast(0, "separator", "current collector"),
pybamm.FullBroadcast(beta_p, "positive electrode", "current collector"),
)
beta_Ox = -c_e_typ * (s_plus_Ox * V_plus + s_w_Ox * V_w + s_ox_Ox * V_ox)
beta_Hy = -c_e_typ * (s_plus_Hy * V_plus + s_hy_Hy * V_hy)
# Electrical
voltage_low_cut = (voltage_low_cut_dimensional - (U_p_ref - U_n_ref)) / potential_scale
voltage_high_cut = (
voltage_high_cut_dimensional - (U_p_ref - U_n_ref)
) / potential_scale
# Electrolyte volumetric capacity
Q_e_max = (l_n * eps_n_max + l_s * eps_s_max + l_p * eps_p_max) / (s_p - s_n)
Q_e_max_dimensional = Q_e_max * c_e_typ * F
capacity = Q_e_max_dimensional * n_electrodes_parallel * A_cs * L_x
# Initial conditions
q_init = pybamm.Parameter("Initial State of Charge")
c_e_init = q_init
c_ox_init = c_ox_init_dim / c_ox_typ
epsilon_n_init = eps_n_max - beta_surf_n * Q_e_max / l_n * (1 - q_init)
epsilon_s_init = eps_s_max
epsilon_p_init = eps_p_max + beta_surf_p * Q_e_max / l_p * (1 - q_init)
epsilon_init = pybamm.Concatenation(
pybamm.FullBroadcast(epsilon_n_init, ["negative electrode"], "current collector"),
pybamm.FullBroadcast(epsilon_s_init, ["separator"], "current collector"),
pybamm.FullBroadcast(epsilon_p_init, ["positive electrode"], "current collector"),
)
curlyU_n_init = Q_e_max * (1.2 - q_init) / (Q_n_max * l_n)
curlyU_p_init = Q_e_max * (1.2 - q_init) / (Q_p_max * l_p)
# hack to make consistent ic with lithium-ion
def c_n_init(x):
return c_e_init
def c_p_init(x):
return c_e_init
# Thermal effects not implemented for lead-acid, but parameters needed for consistency
T_init = pybamm.Scalar(0)
Theta = pybamm.Scalar(0) # ratio of typical temperature change to ambient temperature
# --------------------------------------------------------------------------------------
"5. Dimensionless Functions"
def D_e(c_e, T):
"Dimensionless electrolyte diffusivity"
c_e_dimensional = c_e * c_e_typ
return D_e_dimensional(c_e_dimensional, T_ref) / D_e_typ
def kappa_e(c_e, T):
"Dimensionless electrolyte conductivity"
c_e_dimensional = c_e * c_e_typ
kappa_scale = F ** 2 * D_e_typ * c_e_typ / (R * T_ref)
return kappa_e_dimensional(c_e_dimensional, T_ref) / kappa_scale
# (1-2*t_plus) is for Nernst-Planck
# 2*(1-t_plus) for Stefan-Maxwell
def chi(c_e, c_ox=0, c_hy=0):
return (
chi_dimensional(c_e_typ * c_e)
* (2 * (1 - t_plus))
/ (V_w * c_T(c_e_typ * c_e, c_e_typ * c_ox, c_e_typ * c_hy))
)
def c_w(c_e):
"Dimensionless water concentration"
return c_w_dimensional(c_e_typ * c_e) / c_w_dimensional(c_e_typ)
def m_n(T):
"Dimensionless negative electrode reaction rate"
return 1
def m_p(T):
"Dimensionless positive electrode reaction rate"
return 1
def U_n(c_e_n, T):
"Dimensionless open-circuit voltage in the negative electrode"
c_e_n_dimensional = c_e_n * c_e_typ
return (U_n_dimensional(c_e_n_dimensional, T_ref) - U_n_ref) / potential_scale
def U_p(c_e_p, T):
"Dimensionless open-circuit voltage in the positive electrode"
c_e_p_dimensional = c_e_p * c_e_typ
return (U_p_dimensional(c_e_p_dimensional, T_ref) - U_p_ref) / potential_scale
# --------------------------------------------------------------------------------------
# 6. Input current and voltage
dimensional_current_with_time = pybamm.FunctionParameter(
"Current function [A]", pybamm.t * timescale
)
dimensional_current_density_with_time = dimensional_current_with_time / (
n_electrodes_parallel * pybamm.geometric_parameters.A_cc
)
current_with_time = (
dimensional_current_with_time / I_typ * pybamm.Function(np.sign, I_typ)
)