-
-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathcalendar_ageing.py
54 lines (45 loc) · 1.66 KB
/
calendar_ageing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pybamm as pb
import numpy as np
pb.set_logging_level("INFO")
models = [
pb.lithium_ion.SPM({"SEI": "reaction limited"}),
pb.lithium_ion.SPMe({"SEI": "reaction limited"}),
pb.lithium_ion.SPM(
{"SEI": "reaction limited", "surface form": "algebraic"}, name="Algebraic SPM"
),
pb.lithium_ion.SPMe(
{"SEI": "reaction limited", "surface form": "algebraic"}, name="Algebraic SPMe"
),
pb.lithium_ion.DFN({"SEI": "reaction limited"}),
]
sims = []
for model in models:
parameter_values = model.default_parameter_values
parameter_values["Current function [A]"] = 0
sim = pb.Simulation(model, parameter_values=parameter_values)
solver = pb.CasadiSolver(mode="fast")
years = 30
days = years * 365
hours = days * 24
minutes = hours * 60
seconds = minutes * 60
t_eval = np.linspace(0, seconds, 100)
sim.solve(t_eval=t_eval, solver=solver)
sims.append(sim)
pb.dynamic_plot(
sims,
[
"Terminal voltage [V]",
"Negative particle surface concentration",
"X-averaged negative particle surface concentration",
"Electrolyte concentration [mol.m-3]",
"Total negative electrode SEI thickness [m]",
"X-averaged total negative electrode SEI thickness [m]",
"X-averaged total negative electrode SEI thickness",
"X-averaged negative electrode SEI concentration [mol.m-3]",
"Loss of lithium to negative electrode SEI [mol]",
"Sum of x-averaged negative electrode interfacial current densities",
"Loss of lithium inventory [%]",
["Total lithium lost [mol]", "Loss of lithium to negative electrode SEI [mol]"],
],
)