|
5 | 5 | import pybamm
|
6 | 6 | import unittest
|
7 | 7 | import numpy as np
|
| 8 | +from scipy.optimize import least_squares |
| 9 | +import tests |
8 | 10 |
|
9 | 11 |
|
10 | 12 | class TestCasadiAlgebraicSolver(unittest.TestCase):
|
@@ -172,6 +174,157 @@ def test_solve_with_input(self):
|
172 | 174 | np.testing.assert_array_equal(solution.y, -7)
|
173 | 175 |
|
174 | 176 |
|
| 177 | +class TestCasadiAlgebraicSolverSensitivity(unittest.TestCase): |
| 178 | + def test_solve_with_symbolic_input(self): |
| 179 | + # Simple system: a single algebraic equation |
| 180 | + var = pybamm.Variable("var") |
| 181 | + model = pybamm.BaseModel() |
| 182 | + model.algebraic = {var: var + pybamm.InputParameter("param")} |
| 183 | + model.initial_conditions = {var: 2} |
| 184 | + model.variables = {"var": var} |
| 185 | + |
| 186 | + # create discretisation |
| 187 | + disc = pybamm.Discretisation() |
| 188 | + disc.process_model(model) |
| 189 | + |
| 190 | + # Solve |
| 191 | + solver = pybamm.CasadiAlgebraicSolver() |
| 192 | + solution = solver.solve(model, [0]) |
| 193 | + np.testing.assert_array_equal(solution["var"].value({"param": 7}), -7) |
| 194 | + np.testing.assert_array_equal(solution["var"].value({"param": 3}), -3) |
| 195 | + np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), -1) |
| 196 | + |
| 197 | + def test_least_squares_fit(self): |
| 198 | + # Simple system: a single algebraic equation |
| 199 | + var = pybamm.Variable("var", domain="negative electrode") |
| 200 | + model = pybamm.BaseModel() |
| 201 | + p = pybamm.InputParameter("p") |
| 202 | + q = pybamm.InputParameter("q") |
| 203 | + model.algebraic = {var: (var - p)} |
| 204 | + model.initial_conditions = {var: 3} |
| 205 | + model.variables = {"objective": (var - q) ** 2 + (p - 3) ** 2} |
| 206 | + |
| 207 | + # create discretisation |
| 208 | + disc = tests.get_discretisation_for_testing() |
| 209 | + disc.process_model(model) |
| 210 | + |
| 211 | + # Solve |
| 212 | + solver = pybamm.CasadiAlgebraicSolver() |
| 213 | + solution = solver.solve(model, [0]) |
| 214 | + sol_var = solution["objective"] |
| 215 | + |
| 216 | + def objective(x): |
| 217 | + return sol_var.value({"p": x[0], "q": x[1]}).full().flatten() |
| 218 | + |
| 219 | + # without jacobian |
| 220 | + lsq_sol = least_squares(objective, [2, 2], method="lm") |
| 221 | + np.testing.assert_array_almost_equal(lsq_sol.x, [3, 3], decimal=3) |
| 222 | + |
| 223 | + def jac(x): |
| 224 | + return sol_var.sensitivity({"p": x[0], "q": x[1]}) |
| 225 | + |
| 226 | + # with jacobian |
| 227 | + lsq_sol = least_squares(objective, [2, 2], jac=jac, method="lm") |
| 228 | + np.testing.assert_array_almost_equal(lsq_sol.x, [3, 3], decimal=3) |
| 229 | + |
| 230 | + def test_solve_with_symbolic_input_1D_scalar_input(self): |
| 231 | + var = pybamm.Variable("var", "negative electrode") |
| 232 | + model = pybamm.BaseModel() |
| 233 | + param = pybamm.InputParameter("param") |
| 234 | + model.algebraic = {var: var + param} |
| 235 | + model.initial_conditions = {var: 2} |
| 236 | + model.variables = {"var": var} |
| 237 | + |
| 238 | + # create discretisation |
| 239 | + disc = tests.get_discretisation_for_testing() |
| 240 | + disc.process_model(model) |
| 241 | + |
| 242 | + # Solve - scalar input |
| 243 | + solver = pybamm.CasadiAlgebraicSolver() |
| 244 | + solution = solver.solve(model, [0]) |
| 245 | + np.testing.assert_array_equal(solution["var"].value({"param": 7}), -7) |
| 246 | + np.testing.assert_array_equal(solution["var"].value({"param": 3}), -3) |
| 247 | + np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), -1) |
| 248 | + |
| 249 | + def test_solve_with_symbolic_input_1D_vector_input(self): |
| 250 | + var = pybamm.Variable("var", "negative electrode") |
| 251 | + model = pybamm.BaseModel() |
| 252 | + param = pybamm.InputParameter("param", "negative electrode") |
| 253 | + model.algebraic = {var: var + param} |
| 254 | + model.initial_conditions = {var: 2} |
| 255 | + model.variables = {"var": var} |
| 256 | + |
| 257 | + # create discretisation |
| 258 | + disc = tests.get_discretisation_for_testing() |
| 259 | + disc.process_model(model) |
| 260 | + |
| 261 | + # Solve - scalar input |
| 262 | + solver = pybamm.CasadiAlgebraicSolver() |
| 263 | + solution = solver.solve(model, [0]) |
| 264 | + n = disc.mesh["negative electrode"].npts |
| 265 | + |
| 266 | + solver = pybamm.CasadiAlgebraicSolver() |
| 267 | + solution = solver.solve(model, [0]) |
| 268 | + p = np.linspace(0, 1, n)[:, np.newaxis] |
| 269 | + np.testing.assert_array_almost_equal( |
| 270 | + solution["var"].value({"param": 3 * np.ones(n)}), -3 |
| 271 | + ) |
| 272 | + np.testing.assert_array_almost_equal( |
| 273 | + solution["var"].value({"param": 2 * p}), -2 * p |
| 274 | + ) |
| 275 | + np.testing.assert_array_almost_equal( |
| 276 | + solution["var"].sensitivity({"param": 3 * np.ones(n)}), -np.eye(40) |
| 277 | + ) |
| 278 | + np.testing.assert_array_almost_equal( |
| 279 | + solution["var"].sensitivity({"param": p}), -np.eye(40) |
| 280 | + ) |
| 281 | + |
| 282 | + def test_solve_with_symbolic_input_in_initial_conditions(self): |
| 283 | + # Simple system: a single algebraic equation |
| 284 | + var = pybamm.Variable("var") |
| 285 | + model = pybamm.BaseModel() |
| 286 | + model.algebraic = {var: var + 2} |
| 287 | + model.initial_conditions = {var: pybamm.InputParameter("param")} |
| 288 | + model.variables = {"var": var} |
| 289 | + |
| 290 | + # create discretisation |
| 291 | + disc = pybamm.Discretisation() |
| 292 | + disc.process_model(model) |
| 293 | + |
| 294 | + # Solve |
| 295 | + solver = pybamm.CasadiAlgebraicSolver() |
| 296 | + solution = solver.solve(model, [0]) |
| 297 | + np.testing.assert_array_equal(solution["var"].value({"param": 7}), -2) |
| 298 | + np.testing.assert_array_equal(solution["var"].value({"param": 3}), -2) |
| 299 | + np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), 0) |
| 300 | + |
| 301 | + def test_least_squares_fit_input_in_initial_conditions(self): |
| 302 | + # Simple system: a single algebraic equation |
| 303 | + var = pybamm.Variable("var", domain="negative electrode") |
| 304 | + model = pybamm.BaseModel() |
| 305 | + p = pybamm.InputParameter("p") |
| 306 | + q = pybamm.InputParameter("q") |
| 307 | + model.algebraic = {var: (var - p)} |
| 308 | + model.initial_conditions = {var: p} |
| 309 | + model.variables = {"objective": (var - q) ** 2 + (p - 3) ** 2} |
| 310 | + |
| 311 | + # create discretisation |
| 312 | + disc = tests.get_discretisation_for_testing() |
| 313 | + disc.process_model(model) |
| 314 | + |
| 315 | + # Solve |
| 316 | + solver = pybamm.CasadiAlgebraicSolver() |
| 317 | + solution = solver.solve(model, [0]) |
| 318 | + sol_var = solution["objective"] |
| 319 | + |
| 320 | + def objective(x): |
| 321 | + return sol_var.value({"p": x[0], "q": x[1]}).full().flatten() |
| 322 | + |
| 323 | + # without jacobian |
| 324 | + lsq_sol = least_squares(objective, [2, 2], method="lm") |
| 325 | + np.testing.assert_array_almost_equal(lsq_sol.x, [3, 3], decimal=3) |
| 326 | + |
| 327 | + |
175 | 328 | if __name__ == "__main__":
|
176 | 329 | print("Add -v for more debug output")
|
177 | 330 | import sys
|
|
0 commit comments