-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtest_transpiler_router.py
474 lines (415 loc) · 17.2 KB
/
test_transpiler_router.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import itertools
import networkx as nx
import numpy as np
import pytest
from qibo import gates
from qibo.backends import NumpyBackend
from qibo.models import Circuit
from qibo.quantum_info.random_ensembles import random_unitary
from qibo.transpiler._exceptions import ConnectivityError
from qibo.transpiler.optimizer import Preprocessing
from qibo.transpiler.pipeline import (
assert_circuit_equivalence,
restrict_connectivity_qubits,
)
from qibo.transpiler.placer import (
Custom,
Random,
StarConnectivityPlacer,
Subgraph,
Trivial,
assert_placement,
)
from qibo.transpiler.router import (
CircuitMap,
Sabre,
ShortestPaths,
StarConnectivityRouter,
assert_connectivity,
)
def star_connectivity(middle_qubit=2):
Q = [i for i in range(5)]
chip = nx.Graph()
chip.add_nodes_from(Q)
graph_list = [(Q[i], Q[middle_qubit]) for i in range(5) if i != middle_qubit]
chip.add_edges_from(graph_list)
return chip
def grid_connectivity():
Q = [i for i in range(5)]
chip = nx.Graph()
chip.add_nodes_from(Q)
graph_list = [(Q[0], Q[1]), (Q[1], Q[2]), (Q[2], Q[3]), (Q[3], Q[0]), (Q[0], Q[4])]
chip.add_edges_from(graph_list)
return chip
def generate_random_circuit(nqubits, ngates, seed=42):
"""Generate a random circuit with RX and CZ gates."""
np.random.seed(seed)
one_qubit_gates = [gates.RX, gates.RY, gates.RZ]
two_qubit_gates = [gates.CZ, gates.CNOT, gates.SWAP]
n1, n2 = len(one_qubit_gates), len(two_qubit_gates)
n = n1 + n2 if nqubits > 1 else n1
circuit = Circuit(nqubits)
for _ in range(ngates):
igate = int(np.random.randint(0, n))
if igate >= n1:
q = tuple(np.random.randint(0, nqubits, 2))
while q[0] == q[1]:
q = tuple(np.random.randint(0, nqubits, 2))
gate = two_qubit_gates[igate - n1]
else:
q = (np.random.randint(0, nqubits),)
gate = one_qubit_gates[igate]
if issubclass(gate, gates.ParametrizedGate):
theta = 2 * np.pi * np.random.random()
circuit.add(gate(*q, theta=theta, trainable=False))
else:
circuit.add(gate(*q))
return circuit
def star_circuit():
circuit = Circuit(5)
for i in range(1, 5):
circuit.add(gates.CNOT(i, 0))
return circuit
def matched_circuit():
"""Return a simple circuit that can be executed on star connectivity"""
circuit = Circuit(5)
circuit.add(gates.CZ(0, 2))
circuit.add(gates.CZ(1, 2))
circuit.add(gates.Z(1))
circuit.add(gates.CZ(2, 1))
circuit.add(gates.M(0))
return circuit
def test_assert_connectivity():
assert_connectivity(star_connectivity(), matched_circuit())
def test_assert_connectivity_false():
circuit = Circuit(5)
circuit.add(gates.CZ(0, 1))
with pytest.raises(ConnectivityError):
assert_connectivity(star_connectivity(), circuit)
def test_assert_connectivity_3q():
circuit = Circuit(5)
circuit.add(gates.TOFFOLI(0, 1, 2))
with pytest.raises(ConnectivityError):
assert_connectivity(star_connectivity(), circuit)
@pytest.mark.parametrize("gates", [5, 25])
@pytest.mark.parametrize("placer", [Trivial, Random])
@pytest.mark.parametrize("connectivity", [star_connectivity(), grid_connectivity()])
def test_random_circuits_5q(gates, placer, connectivity):
placer = placer(connectivity=connectivity)
layout_circ = Circuit(5)
initial_layout = placer(layout_circ)
transpiler = ShortestPaths(connectivity=connectivity)
circuit = generate_random_circuit(nqubits=5, ngates=gates)
transpiled_circuit, final_qubit_map = transpiler(circuit, initial_layout)
assert transpiler.added_swaps >= 0
assert_connectivity(connectivity, transpiled_circuit)
assert_placement(transpiled_circuit, final_qubit_map)
assert gates + transpiler.added_swaps == transpiled_circuit.ngates
qubit_matcher = Preprocessing(connectivity=connectivity)
new_circuit = qubit_matcher(circuit=circuit)
assert_circuit_equivalence(
original_circuit=new_circuit,
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)
def test_star_circuit():
placer = Subgraph(star_connectivity())
initial_layout = placer(star_circuit())
transpiler = ShortestPaths(connectivity=star_connectivity())
transpiled_circuit, final_qubit_map = transpiler(star_circuit(), initial_layout)
assert transpiler.added_swaps == 0
assert_connectivity(star_connectivity(), transpiled_circuit)
assert_placement(transpiled_circuit, final_qubit_map)
assert_circuit_equivalence(
original_circuit=star_circuit(),
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)
def test_star_circuit_custom_map():
placer = Custom(initial_map=[1, 0, 2, 3, 4], connectivity=star_connectivity())
initial_layout = placer()
transpiler = ShortestPaths(connectivity=star_connectivity())
transpiled_circuit, final_qubit_map = transpiler(star_circuit(), initial_layout)
assert transpiler.added_swaps == 1
assert_connectivity(star_connectivity(), transpiled_circuit)
assert_placement(transpiled_circuit, final_qubit_map)
assert_circuit_equivalence(
original_circuit=star_circuit(),
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)
def test_routing_with_measurements():
placer = Trivial(connectivity=star_connectivity())
circuit = Circuit(5)
circuit.add(gates.CNOT(0, 1))
circuit.add(gates.M(0, 2, 3))
initial_layout = placer(circuit=circuit)
transpiler = ShortestPaths(connectivity=star_connectivity())
transpiled_circuit, final_qubit_map = transpiler(circuit, initial_layout)
assert transpiled_circuit.ngates == 3
measured_qubits = transpiled_circuit.queue[2].qubits
assert measured_qubits == (0, 1, 3)
assert_circuit_equivalence(
original_circuit=circuit,
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)
def test_sabre_looping():
# Setup where the looping occurs
# Line connectivity, gates with gate_array, Trivial placer
gate_array = [(7, 2), (6, 0), (5, 6), (4, 8), (3, 5), (9, 1)]
loop_circ = Circuit(10)
for qubits in gate_array:
loop_circ.add(gates.CZ(*qubits))
chip = nx.Graph()
chip.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
chip.add_edges_from(
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
)
placer = Trivial(connectivity=chip)
initial_layout = placer(loop_circ)
router_no_threshold = Sabre(
connectivity=chip, swap_threshold=np.inf
) # Without reset
router_threshold = Sabre(connectivity=chip) # With reset
routed_no_threshold, final_mapping_no_threshold = router_no_threshold(
loop_circ, initial_layout=initial_layout
)
routed_threshold, final_mapping_threshold = router_threshold(
loop_circ, initial_layout=initial_layout
)
count_no_threshold = router_no_threshold.added_swaps
count_threshold = router_threshold.added_swaps
assert count_no_threshold > count_threshold
assert_circuit_equivalence(
original_circuit=loop_circ,
transpiled_circuit=routed_no_threshold,
final_map=final_mapping_no_threshold,
initial_map=initial_layout,
)
assert_circuit_equivalence(
original_circuit=loop_circ,
transpiled_circuit=routed_threshold,
final_map=final_mapping_threshold,
initial_map=initial_layout,
)
def test_sabre_shortest_path_routing():
gate_array = [(0, 9), (5, 9), (2, 8)] # The gate (2, 8) should be routed next
loop_circ = Circuit(10)
for qubits in gate_array:
loop_circ.add(gates.CZ(*qubits))
# line connectivity
chip = nx.Graph()
chip.add_nodes_from(range(10))
chip.add_edges_from(
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
)
placer = Trivial(connectivity=chip)
initial_layout = placer(loop_circ)
router = Sabre(connectivity=chip)
router._preprocessing(circuit=loop_circ, initial_layout=initial_layout)
router._shortest_path_routing() # q2 should be moved adjacent to q8
gate_28 = router.circuit.circuit_blocks.block_list[2]
gate_28_qubits = router.circuit.get_physical_qubits(gate_28)
# Check if the physical qubits of the gate (2, 8) are adjacent
assert gate_28_qubits[1] in list(router.connectivity.neighbors(gate_28_qubits[0]))
assert gate_28_qubits[0] in list(router.connectivity.neighbors(gate_28_qubits[1]))
def test_circuit_map():
circ = Circuit(4)
circ.add(gates.H(1))
circ.add(gates.H(0))
circ.add(gates.CZ(0, 1))
circ.add(gates.H(0))
circ.add(gates.CZ(1, 2))
circ.add(gates.CZ(0, 1))
circ.add(gates.CZ(2, 3))
initial_layout = {"q0": 2, "q1": 0, "q2": 1, "q3": 3}
circuit_map = CircuitMap(initial_layout=initial_layout, circuit=circ)
block_list = circuit_map.circuit_blocks
# test blocks_qubits_pairs
assert circuit_map.blocks_qubits_pairs() == [(0, 1), (1, 2), (0, 1), (2, 3)]
# test execute_block and routed_circuit
circuit_map.execute_block(block_list.search_by_index(0))
routed_circuit = circuit_map.routed_circuit()
assert isinstance(routed_circuit.queue[0], gates.H)
assert len(routed_circuit.queue) == 4
assert routed_circuit.queue[2].qubits == (1, 2)
# test update
circuit_map.update((0, 2))
routed_circuit = circuit_map.routed_circuit()
assert isinstance(routed_circuit.queue[4], gates.SWAP)
assert routed_circuit.queue[4].qubits == (1, 0)
assert circuit_map._swaps == 1
assert circuit_map._circuit_logical == [2, 1, 0, 3]
circuit_map.update((1, 2))
routed_circuit = circuit_map.routed_circuit()
assert routed_circuit.queue[5].qubits == (2, 0)
assert circuit_map._circuit_logical == [1, 2, 0, 3]
# test execute_block after multiple swaps
circuit_map.execute_block(block_list.search_by_index(1))
circuit_map.execute_block(block_list.search_by_index(2))
circuit_map.execute_block(block_list.search_by_index(3))
routed_circuit = circuit_map.routed_circuit()
assert isinstance(routed_circuit.queue[6], gates.CZ)
# circuit to logical map: [1,2,0,3]. initial map: {"q0": 2, "q1": 0, "q2": 1, "q3": 3}.
assert routed_circuit.queue[6].qubits == (0, 1) # initial circuit qubits (1,2)
assert routed_circuit.queue[7].qubits == (2, 0) # (0,1)
assert routed_circuit.queue[8].qubits == (1, 3) # (2,3)
assert len(circuit_map.circuit_blocks()) == 0
# test final layout
assert circuit_map.final_layout() == {"q0": 1, "q1": 2, "q2": 0, "q3": 3}
def test_sabre_matched():
placer = Trivial()
layout_circ = Circuit(5)
initial_layout = placer(layout_circ)
router = Sabre(connectivity=star_connectivity())
routed_circuit, final_map = router(
circuit=matched_circuit(), initial_layout=initial_layout
)
assert router.added_swaps == 0
assert final_map == {"q0": 0, "q1": 1, "q2": 2, "q3": 3, "q4": 4}
assert_connectivity(circuit=routed_circuit, connectivity=star_connectivity())
assert_circuit_equivalence(
original_circuit=matched_circuit(),
transpiled_circuit=routed_circuit,
final_map=final_map,
initial_map=initial_layout,
)
@pytest.mark.parametrize("seed", [42])
def test_sabre_simple(seed):
placer = Trivial()
circ = Circuit(5)
circ.add(gates.CZ(0, 1))
initial_layout = placer(circ)
router = Sabre(connectivity=star_connectivity(), seed=seed)
routed_circuit, final_map = router(circuit=circ, initial_layout=initial_layout)
assert router.added_swaps == 1
assert final_map == {"q0": 2, "q1": 1, "q2": 0, "q3": 3, "q4": 4}
assert routed_circuit.queue[0].qubits == (0, 2)
assert isinstance(routed_circuit.queue[0], gates.SWAP)
assert isinstance(routed_circuit.queue[1], gates.CZ)
assert_connectivity(circuit=routed_circuit, connectivity=star_connectivity())
assert_circuit_equivalence(
original_circuit=circ,
transpiled_circuit=routed_circuit,
final_map=final_map,
initial_map=initial_layout,
)
@pytest.mark.parametrize("n_gates", [10, 40])
@pytest.mark.parametrize("look", [0, 5])
@pytest.mark.parametrize("decay", [0.5, 1.0])
@pytest.mark.parametrize("placer", [Trivial, Random])
@pytest.mark.parametrize("connectivity", [star_connectivity(), grid_connectivity()])
def test_sabre_random_circuits(n_gates, look, decay, placer, connectivity):
placer = placer(connectivity=connectivity)
layout_circ = Circuit(5)
initial_layout = placer(layout_circ)
router = Sabre(connectivity=connectivity, lookahead=look, decay_lookahead=decay)
circuit = generate_random_circuit(nqubits=5, ngates=n_gates)
measurement = gates.M(*range(5))
circuit.add(measurement)
transpiled_circuit, final_qubit_map = router(circuit, initial_layout)
assert router.added_swaps >= 0
assert_connectivity(connectivity, transpiled_circuit)
assert_placement(transpiled_circuit, final_qubit_map)
assert n_gates + router.added_swaps + 1 == transpiled_circuit.ngates
assert_circuit_equivalence(
original_circuit=circuit,
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)
assert transpiled_circuit.queue[-1].register_name == measurement.register_name
def test_sabre_memory_map():
placer = Trivial()
layout_circ = Circuit(5)
initial_layout = placer(layout_circ)
router = Sabre(connectivity=star_connectivity())
router._preprocessing(circuit=star_circuit(), initial_layout=initial_layout)
router._memory_map = [[1, 0, 2, 3, 4]]
value = router._compute_cost((0, 1))
assert value == float("inf")
def test_sabre_intermediate_measurements():
measurement = gates.M(1)
circ = Circuit(3, density_matrix=True)
circ.add(gates.H(0))
circ.add(measurement)
circ.add(gates.CNOT(0, 2))
connectivity = nx.Graph()
connectivity.add_nodes_from([0, 1, 2])
connectivity.add_edges_from([(0, 1), (1, 2)])
router = Sabre(connectivity=connectivity)
initial_layout = {"q0": 0, "q1": 1, "q2": 2}
routed_circ, _ = router(circuit=circ, initial_layout=initial_layout)
assert routed_circ.queue[3].register_name == measurement.register_name
@pytest.mark.parametrize("router_algorithm", [Sabre, ShortestPaths])
def test_restrict_qubits(router_algorithm):
circ = Circuit(3)
circ.add(gates.CZ(0, 1))
circ.add(gates.CZ(0, 2))
circ.add(gates.CZ(2, 1))
initial_layout = {"q0": 0, "q2": 2, "q3": 1}
connectivity = star_connectivity()
restricted_connectivity = restrict_connectivity_qubits(connectivity, [0, 2, 3])
router = router_algorithm(connectivity=restricted_connectivity)
routed_circ, final_layout = router(circuit=circ, initial_layout=initial_layout)
assert_circuit_equivalence(
original_circuit=circ,
transpiled_circuit=routed_circ,
final_map=final_layout,
initial_map=initial_layout,
)
assert_connectivity(restricted_connectivity, routed_circ)
assert_placement(routed_circ, final_layout, connectivity=restricted_connectivity)
assert routed_circ.wire_names == ["q0", "q2", "q3"]
def test_star_error_multi_qubit():
circuit = Circuit(3)
circuit.add(gates.TOFFOLI(0, 1, 2))
transpiler = StarConnectivityRouter(middle_qubit=2)
with pytest.raises(ConnectivityError):
transpiled, hardware_qubits = transpiler(
initial_layout={"q0": 0, "q1": 1, "q2": 2}, circuit=circuit
)
@pytest.mark.parametrize("nqubits", [1, 3, 5])
@pytest.mark.parametrize("middle_qubit", [0, 2, 4])
@pytest.mark.parametrize("depth", [2, 10])
@pytest.mark.parametrize("measurements", [True, False])
@pytest.mark.parametrize("unitaries", [True, False])
def test_star_router(nqubits, depth, middle_qubit, measurements, unitaries):
unitary_dim = min(2, nqubits)
connectivity = star_connectivity(middle_qubit)
if unitaries:
circuit = Circuit(nqubits)
pairs = list(itertools.combinations(range(nqubits), unitary_dim))
for _ in range(depth):
qubits = pairs[int(np.random.randint(len(pairs)))]
circuit.add(
gates.Unitary(
random_unitary(2**unitary_dim, backend=NumpyBackend()), *qubits
)
)
else:
circuit = generate_random_circuit(nqubits, depth)
if measurements:
circuit.add(gates.M(0))
transpiler = StarConnectivityRouter(middle_qubit=middle_qubit)
placer = StarConnectivityPlacer(middle_qubit=middle_qubit)
initial_layout = placer(circuit=circuit)
transpiled_circuit, final_qubit_map = transpiler(
circuit=circuit, initial_layout=initial_layout
)
assert_connectivity(connectivity, transpiled_circuit)
assert_placement(transpiled_circuit, final_qubit_map)
matched_original = Circuit(max(circuit.nqubits, middle_qubit + 1))
for gate in circuit.queue:
matched_original.add(gate)
assert_circuit_equivalence(
original_circuit=matched_original,
transpiled_circuit=transpiled_circuit,
final_map=final_qubit_map,
initial_map=initial_layout,
)